首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ohura H  Ishibashi Y  Imato T  Yamasaki S 《Talanta》2003,60(1):177-184
A highly sensitive potentiometric flow injection analysis method for the determination of manganese(II), utilizing a redox reaction with hexacyanoferrate(III) in near neutral media containing ammonium citrate is described. The analytical method is based on the detection of the change in potential of a flow-through type redox electrode detector, resulting from the composition change of an [Fe(CN)6]3−-[Fe(CN)6]4− potential buffer solution. A linear relationship between the potential change (peak height) and the concentration of manganese(II) was found. Manganese(II) in a wide concentration range from 10−4 to 10−7 M could be determined by appropriately altering the concentration of the potential buffer from 10−3 to 10−5 M. The lower detection limit of manganese(II) was determined to be 1×10−7 M. The sampling rate and relative standard deviation were 20 h−1 and 1.9% (n=8) for 6×10−6 M manganese(II), respectively. The proposed method was successfully applied to the determination of manganese(II) in actual soil samples obtained from tea fields. Analytical results obtained by the proposed method were in good agreement with those obtained by an atomic absorption spectrophotometric method.  相似文献   

2.
A novel solid phase extraction technique for the speciation of trace dissolved Fe(II) and Fe(III) in environmental water samples was developed by coupling micro-column packed with N-benzoyl-N-phenylhydroxylamine (BPHA) loaded on microcrystalline naphthalene to electrothermal vaporization inductively coupled plasma-optical emission spectrometry (ETV-ICP-OES). Various influencing factors on the separation and preconcentration of Fe(II) and Fe(III), such as the acidity of the aqueous solution, sample flow rate and volume, have been investigated systematically, and the optimized operation conditions were established. At pH 3.0 Fe(III) could be selectively retained by micro-column (20 mm × 1.4 mm, i.d.) packed with BPHA immobilized on microcrystalline naphthalene, and Fe(II) passed through the micro-column. Both Fe(II) and Fe(III) could be adsorbed by the micro-column at pH 6.5. Thus, the total Fe could be determined without the need for preoxidation of Fe(II) to Fe(III). The retained Fe(III) or the Fe(II) and Fe(III) was subsequently eluted by 0.1 ml of 1 mol l−1 HCl. The adsorption capacity of the solid phase adsorption material was found to be 45.0 mg g−1 for Fe(III) at pH 3.0 and 65.3 mg g−1 for Fe(II) at pH 6.5, respectively. The detection limit (3σ) of 0.053 μg l−1 was obtained with a practical enrichment factor of 156 at a sample volume of 17 ml. The relative standard deviations of 4.2% and 4.6% (CFe(III) = CFe(II) = 10 μg l−1, n = 7) for Fe(III) and total iron were found, respectively. The method was successfully applied to the determination of trace Fe(II) and Fe(III) in environmental water samples (East Lake water, local tap water and mineral water). In order to validate the method, the developed method was applied to the determination of total iron in certified materials of NIES NO.10-b rice flour and GBW07605 tea leaves, and the results obtained were in good agreement with the certified values.  相似文献   

3.
《Thermochimica Acta》1987,112(2):275-287
The thermal investigations of metal carboxylato complexes of the first transition metals, Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II) and non transition metals like Zn(II) and Cd(II) in solid state were carried out under non-isothermal condition in nitrogen atmopshere by thermogravimetric (TG) and differential thermal analyses (DTA) methods. The results of DTA curves inferred that the thermal stability of the complex decreased approximately with the increase of standard potential of the central metal ion. The thermal parameters like activation energy (Ea1), enthalpy change (ΔH) and entropy change (ΔS) corresponding to deaquation, deammoniation and decomposition processes occurred simultaneously or separately were determined from TG and DTA curves by the standard methods. A linear correlation has been found in the plots of ΔH vs. ΔS and Ea1 vs. ΔS in deaquation, deammoniation and decomposition processes. An irreversible phase transition was noticed for H2[Mn(suc)2] and H2[Co(suc)2] complexes in DTA curves. The residual pyrolysed products were metal carbonates.  相似文献   

4.
He(I) and He(II) photoelectron spectra are reported for the 1-aza-1,3-butadienes (R1NCHCHCHR2 denoted by R1,R2-ABD) t-Bu,Me-ABD and i-Pr,Ph-ABD and their tricarbonyliron complexes [Fe(CO)3(R1,R2-ABD)]. Assignments of ionizations from the iron d and ligand orbitals have been made with the aid of He(I)/He(II) intensity ratios and some semi-empirical molecular orbital calculations on the model ligand Me,H-ABD (MNDO) and on the model complex [Fe(CO)3(H,H-ABD)] (CNDO/S).A remarkable feature is the lowering of the ionization energy from the Fe dxz/yz2 orbital with respect to the other d orbitals (dxy/dx2y2/dz2)6 by about 0.9 eV, an effect which has not been found for the related [Fe(CO)3(1,3-butadiene)] complexes. The involvement of the nitrogen lone pair in the bonding between the R1,R2-ABD and Fe(CO)3 moieties is discussed.  相似文献   

5.
Summary A method is described for the simultaneous speciation of Fe(CN) 6 4– and Fe(CN) 6 3– in a flow injection (FIA) system comprising electrochemical (EC) and flame atomic absorption spectrometry (AAS) detectors in series. One of these species is detected amperometrically at a Pt-electrode by applying the required potential and measuring the resulting reduction or oxidation current of the appropriate iron cyanide complex. Total iron in both species is determined by an AAS detector. The EC detector is inherently more sensitive, with a detection limit of 0.5 g Fe l–1 and a relative standard deviation of 1.0% for a 0.040 g Fe ml–1 sample. The limit of detection for the AAS detector is 0.5 g Fe ml–1, and the relative standard deviation for a 5.70 g Fe ml–1 sample is 0.40%. The method enables up to 60 analyses (120 speciations) per hour and obviates the problem of easy oxidation of Fe(CN) 6 4– .
Simultane Speziation von Eisen(II)- und Eisen(III)-Cyanokomplexen durch Flie\injektionsanalyse mit Hilfe von hintereinander geschalteten elektrochemischen und AAS-Detektoren
  相似文献   

6.
The formation constants K ML of Clarithromycin (CLA) and Roxithromycin (ROX) with Fe(III) and Fe(II) ions in methanol have been determined at various temperatures using a conductometric technique. The interaction yields complexes with metal-to-ligand compositions of 1:1. The conductivity data were analyzed using a computer program based on 1:1 stoichiometry from which the stability constants and the limiting molar conductance were obtained. The stability of these complexes was found to increase with temperature. Compared with Fe(II), Fe(III) forms more stable complexes with ROX and CLA. The values of the thermodynamic parameters enthalpies (??H °), entropies (??S °), and the derived Gibbs energies (??G °) were deduced from the dependence of the formation constants on temperature. The positive values of ??H ° and ??S ° indicate that the complexation processes is enthalpically unfavorable but entropically favored. The negative values of ??G ° show the ability of the studied ligand to form stable complexes and that the complexation process is favorable.  相似文献   

7.
A new method was proposed to probe the interactions between transition metals of Fe(II), Fe(III), Cu(II) with a non steroidal anti-inflammatory drug (NSAID), flufenamic acid (FF) using graphene as a matrix for Graphene assisted laser desorption ionization mass spectrometry (GALDI-MS). Metal–drug complexation was confirmed via UV absorption spectroscopy, fluorescence spectroscopy, pH meter, and change in solution conductivity. The optimal molar ratios for these complexation interactions are stoichiometry 1:2 in both Cu(II) and Fe(II) complexes, and 1:3 in Fe(III) complexes at physiological pH (7.4). Metal complexation of the drug could enhance fluorescence for 20 fold which is due to the charge transfer reaction or increase rigidity of the drug. The main interaction between graphene and flufenamic acid is the П–П interaction which allows us to probe the metal–drug complexation. The GALDI-MS could sensitively detect the drug at m/z 281.0 Da (protonated molecule) with detection limit 2.5 pmol (1.0 μM) and complexation at m/z 661.0, 654.0 and 933.0 Da corresponding to [Cu(II)(FF)2(H2O)2 + H]+, [Fe(II)(FF)2(H2O)2 + H]+ and [Fe(III) (FF)3(H2O)2 + H]+, respectively (with limit of detection (LOD) 2.0 pmol (10.0 μM). Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) spectra show change in the protein profile of intact pathogenic bacteria (Pseudomonas aeroginosa, Staphylococcus aureus). The change in the ionization ability (mainly proton affinity) of pathogenic bacteria may be due to the interactions between the bacteria with the drug (or its complexes). Shielding carboxylic group by metals and increase the hydrophilicity could enhance the biocompatibility of complexes toward the pathogenic bacteria which can be used as biosensors with high sensitivity and lowest detectable concentrations are in the range of 3.3 × 103–3.9 × 104 cfu mL−1 with large linear dynamic range.  相似文献   

8.
The electrochemical Peltier effect was studied at a gold electrode in solutions containing some Fe(II)/Fe(III) redox couples by measuring the local temperature change in the electrode/solution interphase under controlled-potential and controlled-current polarization. Relative values of the electrochemical Peltier coefficient for the cathodic process at equilibrium potential, which is denoted by (Πc)I=0, were determined by analyzing the observed temperature change as a function of current. The values of (Πc)I=0 were found to be positive for the Fe(H2O)62+/Fe(H2O)63+ systems in HClO4 (1 M), HNO3 (1 M), H2SO4 (0.5 M), and HCl (1 M), their magnitudes being very similar in the first three acid solutions, but smaller in the HCl solution. On the other hand, a negative value of (Πc)I=0 was obtained in the case of a Fe(CN)64?/Fe(CN)63? couple in a H2SO4 (0.5 M) solution. Such a difference in the Peltier coefficient is considered to be due to the difference in the ionic species of iron involved in the electrode reaction.  相似文献   

9.
Two spectrophotometric methods, a photochemical and a non-photochemical, for the determination of ascorbic acid in soft drinks and beer using a flow-injection system are proposed. The non-photochemical method is based on the redox reaction that takes place between ascorbic acid and Fe(III), yielding dehydroascorbic acid and Fe(II). Fe(II) reacts with 1,10-phenantroline, originating the reddish orange Fe(phen)3 2+ complex (ferroin). This complex is spectrophotometrically monitored at 512 nm, and the signal is directly related to the concentration of ascorbic acid in the sample. The photochemical method has the same basis, nevertheless, uses the irradiation with visible light to enhance the redox reaction and so achieve higher sensitivities in the analysis. The non-photochemical method shows a linear range between 5 and 80 μg mL?1, with a relative standard deviation of 1.6% (n = 11), a detection limit of 2.7 μg mL?1 and a sample throughput of ¶60 samples h?1. The photochemical method shows a linear range between 1 and 80 μg mL?1, with a relative standard deviation of 1.0% (n = 11), a detection limit of 0.5 μg mL?1 and a sample throughput of 40 samples h?1.  相似文献   

10.
A method for speciation, preconcentration and separation of Fe(II) and Fe(III) in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. 4-Acetyl-5-methyl-1-phenyl-1H-pyrazole-3-carboxylic acid (AMPC) was used as a new complexing reagent for Fe(III). The Fe(III)-AMPC complex was extracted into methyl isobutyl ketone (MIBK) phase in the pH range 1.0-2.5, and Fe(II) ion remained in aqueous phase at all pH. The chemical composition of the Fe(III)-AMPC complex was determined by the Job's method. The optimum conditions for quantitative recovery of Fe(III) were determined as pH 1.5, shaking time of 2 min, 1.64 × 10−4 mol L−1 AMPC reagent and 10 mL of MIBK. Furthermore, the influences of diverse metal ions were investigated. The level of Fe(II) was calculated by difference of total iron and Fe(III) concentrations. The detection limit based on the 3σ criterion was found to be 0.24 μg L−1 for Fe(III). The recoveries were higher than 95% and relative standard deviation was less than 2.1% (N = 8). The validation of the procedure was performed by the analysis of two certified standard reference materials. The presented method was applied to the determination of Fe(II) and Fe(III) in tap water, lake water, river water, sea water, fruit juice, cola, and molasses samples with satisfactory results.  相似文献   

11.
Reversed phase liquid chromatography using UV detection was developed for the simultaneous analysis of Hg(II), Pb(II), Cd(II), Ni(II), Fe(III) and V(V) ions after their complexation with pyrrolidine-dithiocarbamate (PDC). Optimum chromatographic conditions were a μ-Bondapak C18 column and an isocratic mobile phase consisting of 40 mmol L?1 SDS, 34 mmol L?1 TBABr and 68% acetonitrile in 10 mmol L?1 phosphate buffer pH 3.5. The separation of six PDC complexes was achieved within 8 min. Analytical performances and method validation were investigated. The detection limits ranged from 0.16 μg L?1(Fe(III)) to 5.40 μg L?1(Pb(II)). Recoveries obtained for all the studied samples including tap water, whole blood and vegetables were 72–98%. The results obtained from the proposed method were not significantly different compared to those obtained from atomic absorption spectrometry (P = 0.05).  相似文献   

12.
The internal magnetic field (H n ) at57Fe nucleus was investigated for the mixed crystals, NBu4[Fe(II) x Mn(II)1-x Cr(III) (ox)3] (x=0.03?1) and NBu4[Fe(II) x Ni(II)1-x Fe(III)(ox)3]) (x=0?1) using Mössbauer spectroscopy, where NBu4/+=tetra(n-butyl)ammonium ion and ox2?=oxalate ion. With the decrease ofx, the direction ofH n at Fe(II) in NBu4[Fe(II) x Mn(II)1-x Cr(III)(ox)3] changed gradually from parallel to perpendicular, to the honeycomb layers consisting of an alternate array of the bivalent and tervalent ions through ox2? ligands. A variation of ca. 50° in direction was observed for theH n at Fe(III) in NBu4[Fe(II) x Ni(II)1-x Fe(III)(ox)3].  相似文献   

13.
《Thermochimica Acta》1987,109(2):331-342
Thermal investigation of metal carboxylato complexes of the first transition metals, Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II) and non-transition metals like Zn(II) and Cd(II) in the solid state has been carried out under non-isothermal conditions in nitrogen atmosphere by simultaneous TG and DTA. TG and DTA curves inferred that the thermal stability of the complex decreased approximately with the increase of the standard potential of the central metal ion. The thermal parameters like activation energy, Ea, enthalpy change, ΔH, and entropy change, ΔS, corresponding to the dehydration and decomposition of the complexes are determined from TG and DTA curves by standard methods. A linear correlation is found between ΔH and ΔS and Ea and ΔS in dehydration and decomposition processes. DTA curves show an irreversible phase transition for Na2Mn(mal)2], Na2[Cu(mal)2] and Na2,[Co(suc)2] complexes. The residual products in these decomposition processes being a mixture of two oxides, of oxide and carbonate or a mixture of two carbonates.  相似文献   

14.
Roy PK  Rawat AS  Rai PK 《Talanta》2003,59(2):239-246
A new chelating resin was synthesised by the modification of styrene-divinylbenzene (2%) copolymer and incorporation of dithiocarbamate groups. The polydithiocarbamate resin was characterised by elemental analysis, thermal studies and IR studies. The analytical characteristics of the sorbent were established and optimum sorption conditions for Cu, Ni, Pb, Fe, As and Mn determined. The total sorption capacity of the resin was 37 mg g−1 for Ni(II), 35 mg g−1 for Cu(II), 29 mg g−1 for Fe(III) and 23 mg g−1 for Pb(II). The optimum pH for the removal of metal ions was 3-5 for Ni(II), 5 for Cu(II), 4 for Fe(III) and 4-5 for Pb(II). High sorption capacity was observed when compared with other conventional chelating polymers. The sorption kinetics was fairly rapid, as apparent from the loading half time t1/2 values, indicating a better accessibility of the chelating sites.  相似文献   

15.
Time and spacially resolved spectra of a cylindrically symmetric exploding thin film plasma were obtained with a rotating mirror camera and astigmatic imaging. These spectra were decouvolved to obtain relative spectral emissivity profiles for nine Fe(II) and two Fe(I) lines. The effective (electronic) excitation temperature at various positions in the plasma and at various times during the first current halfcycle was computed from the Fe(II) emissivity values using the Boltzmann graphical method. The Fe(II)/Fe(I) emissivity ratios together with the temperature were used to determine the degree of ionization of Fe. Finally, the electron density was estimated from the Saha equilibrium. Electronic excitation temperatures range from 10,000–15,000 K near the electrode surface at peak discharge current to 7000–10,000 K at 6–10 mm above the electrode surface at the first current zero. Corresponding electron densities range from 1017-1018 cm?3 at peak current to 1015-1016cm?3 near zero current. Error propagation and criteria for thermodynamic equilibrium are discussed.  相似文献   

16.
The kinetics and stoichiometry of the formation of active oxygen (AO) in the acidic decomposition of trimeric (TATP) and dimeric (DADP) cyclic acetone peroxides are considered. Fe(III) produced as a result of Fe(II) oxidation with active oxygen has been determined using rhodanide procedure. The kinetics of the formation of active oxygen is described by a first order equation. The effective rate constant of TATP decomposition depends on the Hammett acidity function H 0: log k eff = ?H 0 ? 2.6 (k eff is in s?1). Consequently, the decomposition rate of TATP is limited by protonation. In the HCl and H2SO4 concentration range from 0.006 to 2.9 mol/L, the decomposition of DADP occurs with k eff = 0.0010 ± 0003 s?1 at a Fe(II) concentration of 3.5 mmol/L and k eff depends linearly on the concentration of Fe(II).  相似文献   

17.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

18.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

19.
The method exploits the possibilities of flow injection gradient titration in a system of reversed flow with spectrophotometric detection. In the developed approach a small amount of titrant (EDTA) is injected into a stream of sample containing a mixture of indicators (sulfosalicylic acid and 1,10-phenanthroline). In acid environment sulfosalicylic acid forms a complex with Fe(III), whereas 1,10-phenanthroline forms a complex with Fe(II). Measurements are performed at wavelength λ = 530 nm when radiation is absorbed by both complexes. After injection EDTA replaces sulfosalicylic acid and forms with Fe(III) more stable colourless complex. As a result, a characteristic “cut off” peak is registered with a width corresponding to the Fe(III) concentration and with a height corresponding to the Fe(II) concentration. Calibration was performed by titration of four two-component standard solutions of the Fe(II)/Fe(III) concentrations established in accordance with 22 factorial plan. The method was tested with the use of synthetic samples and then it was applied to the analysis of water samples taken from artesian wells. Under optimized experimental conditions Fe(II) and Fe(III) were determined with precision less than 0.8 and 2.5% (RSD) and accuracy less than 3.2 and 5.1% (relative error) within the concentration ranges of 0.1-3.0 and 0.9-3.5 mg L−1 of both analytes, respectively.  相似文献   

20.
Chlorohemin (Fe(III)PPCl) undergoes photoreduction when irradiated in pure pyridine solution with 400–450 nm light. A thermal reduction is observed to occur simultaneously with the photochemical one, but after a one hour irradiation about 75% of the reduction product is formed in a photochemical way. Both five and six-coordinated species are observed to be present in solution; however, only the Fe(III)PPpy+ five coordinated complex is photoreducible. A mechanism is proposed whereby the primary photochemical act is an axial pyridine → iron electron transfer process yielding Fe(II)PP and py+ species. The Fe(II)PP moiety gives rise to the formation of the spectrophotometrically detectable Fe(II)(PP(py)2 complex. ESR spin trapping results are consistent with the formation of 2-pyridyl radicals from py+ cation by fast transfer of a proton to a pyridine molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号