首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A liquid ion-exchange electrode containing a complex of mercury(II) with N-(O,O-diisopropylthiophosphoryl)thiobenzamide in carbon tetrachloride is described. The electrode shows excellent sensitivity and good selectivity. The slope of the calibration graph is 29.0 mV/pHg2+ in the pHg2+ in the pHg2+ range 2–15.2 in mercury(II) ion buffers. The electrode can be used for determination of 5 × 10?5–10?2 M Hg(II) in the presence of 10?2 M Cu(II), Ni(II), Co(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III), Cr(III), Bi(III) or Al(III) ions and in the presence of 10?3 M Ag(I) ions. It can bealso used for end-point detection in titrations with EDTA of 10?3–10?4 M mercury(II) at pH 2.  相似文献   

2.
The construction and analytical applications of an improved liquid-membrane electrode for salicylate are described. Tests of various combinations of symmetrical tetraalkylammonium salicylates and solvents showed that the best liquid ion-exchanger was tetraoctylammonium salicylate in p-nitrocumene. Electrode response is Nernstian down to 2 × 10?5 M. Major interferences are perchlorate and periodate; the working pH range is 6–9. The electrode is useful for direct potentiometric determinations of salicylate in pharmaceutical preparations.  相似文献   

3.
Solution studies showed a selective interaction between the new synthesized ionophore, 2-[(thiophen-2-yl)methyleneamino]isoindoline-1,3-dione (TMID) and Fe(III) ion. Therefore, TMID was used as an iron selective ion-carrier in a plasticized liquid membrane sensor. The linear response range of the proposed electrode was 1.0 × 10?6–1.0 × 10?2 M. The Nernstian slope of 20.1 ± 0.3 mV/decade, and a detection limit of 5 × 10?7 M was obtained. The sensor could be used in the pH range of 2.3–4.8, and the response time was about 10 s. The lifetime of the electrode was at least 7 weeks. The sensor accuracy was investigated in two ways: (i) with the potentiometric titration of a Fe3+ solution with EDTA and (ii) with Fe(III) monitoring in some cationic mixtures. Finally, the newly fabricated electrode was effectively applied as an indicator electrode for the direct Fe3+ determination in real samples.  相似文献   

4.
《Electroanalysis》2004,16(16):1330-1335
A poly(vinyl chloride) membrane sensor based on oxalic acid bis (cyclohexylidene hydrazide) as membrane carrier was prepared and investigated as a Cr(III)‐selective electrode. The electrode reveals a Nernstian behavior (slope 19.8±0.4 mV decade?1) over a wide Cr(III) ion concentration range 1.0×10?7–1.0×10?2 mol dm?3 with a very low limit of detection (i.e., down to 6.3×10?8 mol dm?3). The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 1.7–6.5. The electrode possesses advantage of very fast response, relatively long lifetime and especially good selectivity to wide variety of other cations. The sensor was used as an indicator electrode, in the potentiometric titration of chromium ion and in the determination of Cr(III) in waste water and alloy samples.  相似文献   

5.
A new tin complex namely tetracyclohexyl tin(IV) (TCHT) was synthesized and used as the ion carrier for the construction of a highly selective salicylate sensor. This sensor shows a Nernstian response to salicylate ions over a very wide concentration (1.0 × 10?7–1.0 × 10?1 M) in a pH range of 5.5–10.5. The optimum selectivity and response could be obtained for a membrane incorporating 30% PVC, 61% BA, 3% of cationic additive (HTAB) and 6% of TCHT. The response time of the electrode is very short in the whole concentration range (15 s). The electrode also shows an excellent discriminating ability for salicylate ions with respect to the most common organic and inorganic anions including chloride, sulfate, nitrate, nitrite, cyanide, sulfite, iodide, thiocyanate, phosphate, acetate, oxalate, citrate, and tartarate ions. The detection limit of the proposed sensor is 8.0 × 10?8 M. The electrode was successfully used for determining the concentration of salicylate ion in synthetic serums.  相似文献   

6.
The lipophillic ammonium salt of 1‐pyrrolidine dicarbodithioic acid (PCDT) (I) was introduced as a new selective ionophore for an iron selective electrode. In addition, the effect of immobilization of 18‐crown‐6 (18CE6) (membrane type‐II), on the electrode performance was discussed. The slope of the PCDT‐based (I) electrode was (20 mV/decade). The linear concentration range was (10?5–10?1 M) after one day doping. The detection limit for electrode type‐(II) was (1.3×10?6 M). For membrane with only 18CE6 (type‐III) the linear range and the detection limit were improved (10?5–10?1 M and 3.2×10?6 M, respectively). The pH‐range was between 5–11 for type‐II, and III electrodes, while it was 7–11 for type‐I electrode. Most of the common cations were tested for the evaluation of the electrode selectivity with correlation to the ionic radii of the tested cations. Among them only Ag+ and Pb2+ were the real interference for type‐III electrode. Application of using the electrode for the determination of iron in lubrication oil samples was performed with RSD (1.77–2.7%) and (1.01–2.3%) for type‐II and III electrodes, respectively. The corresponding recovery ranges were (93.0–99.9%) and (96.3–100%). The obtained results were compared to those of an atomic absorption spectrophotometric method.  相似文献   

7.
A salicylate‐selective electrode based on calix[4]arene derivative was developed and its response characteristics were investigated. The optimum membrane composition was 1 % ionophore, 30 % PVC, 69 % DOS. The electrode exhibited a Nernstian slope of 58.8±0.5 mV/pSal in the range of 1.0×10?5–1.0×10?1 M with a detection limit of 4.3×10?6 M at pH 4.0, 20±1 °C. The potentiometric response of the electrode in the presence of different anions was investigated by the separate solution method. The lifetime was found at least 4 months, and its response time was 5–10 s. It was successfully used for the potentiometric determination of salicylate in pharmaceutical preparations.  相似文献   

8.
《Electroanalysis》2004,16(11):910-914
A novel bromide PVC‐based membrane sensor, based on iron(III)‐salen (IS) as an electroactive material, is successfully developed. The sensor possesses the advantages of low detection limit (6.0×10?6), wide working concentration range (7.0×10?6–1.0×10?1 M), Nernstian behavior (slope of 59.0±0.5 mV per decade), low response time (<15 s), wide working pH range (3–9), and specially, high bromide selectivity over a wide variety of organic and inorganic anions, specially iodide, chloride, and hydroxide ions. The electrode was used in the direct potentiometric determination of hyoscine butylbromide, and as an indicator electrode in potentiometric titration of bromide ions with silver ions.  相似文献   

9.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

10.
In the present work, a novel sensitive electrochemical potentiometric sensor for sensing Fe3+ ions based on 1,4-diaminoanthraquinone (DAQ) as a hydrophobic selector element was prepared to implement as an ion selective carbon paste electrode in the aqueous solutions. The adequate amounts of ionophore (5%), paraffin oil (25%) as a binder, Nanosilica (NS: 0.5%) multi-wall carbon nanotubes (MWCNTs: 1%) as a modifier, and graphite powder (68.5%) as an inert matrix was occupied to form the paste. This new FeCP sensor demonstrated a Nernstian slope of 19.7 ± 0.7 mV per decade over widish linear range between 1.0 × 10–8 to 1.0 × 10–2 mol L–1 at working pH range of 1.9–5.0 in the optimized conditions. The average elapsed time to response of electrode was about ~6 s for concentrations from lower (1.0 × 10?8 mol L–1) to higher (1.0 × 10?2 mol L–1) of Fe3+ ion solution. The selectivity of electrode toward Fe3+ ions in comparison with other cations was studied by matched potential method. The making FeCP sensor has been put to use successfully as an indicator electrode in analytical applications such as the potentiometric titration and determination of iron(III) ion in blend of different ions.  相似文献   

11.
The sufficient amounts of bis(salicylaldehyde) thiocarbohydrazone (STCH) as a lipophilic selective element (3%, w/w), sodium nitrobenzene (NB) as a plasticizer (64%, w/w), tetraphenyl borate (NaTPB) as an anionic additive (3%, w/w), and poly vinyl chloride (PVC) as a polymeric matrix (30%, w/w) was employed to form a PVC membrane of a new Pr3+ ions selective sensor to apply as an indicator electrode in analytical applications. The best electrode response was observed in the slope (19.5 ± 0.7 mV per decade) over a wide concentrations from lower (1.0 × 10?6 mol L–1) to higher (1.0 × 10?2 mol L–1) of Pr3+ ion solution with a detection limit of 8.5 × 10–7 mol L–1. This electrode showed the fast response time about 10 second for praseodymium ion concentration range of 1.0 × 10–6 to 1.0 × 10–2 mol L–1, in the pH range of 2.3–7.9. The matched potential method was applied to study the selectivity of electrode toward Pr3+ ions in comparison with many common cations. The results showed the negligible disturbance of all other cations on the proposed praseodymium(III) electrode. The making sensor has been employed successfully as an indicator electrode in the potentiometric titration of praseodymium(III) solution with EDTA at pH 6.0. Moreover the applicability of the sensor was studied in determination of Pr3+ ion in mixtures of different ions.  相似文献   

12.
《Analytical letters》2012,45(9):1473-1486
ABSTRACT

A series of tribenzyltin(IV) phenolates were synthesized and used as anion ionophores for PVC membrane electrodes; these novel electrodes exhibit a linear response towards salicylate and an anti-Hofmeister selectivity pattern with high specificity for salicylate over many common anions. The results show that the behavior of the electrodes is considerably influenced by the structures of the carriers and the experimental conditions. Electrodes based on tribenzyltin(IV) p-nitrophenolate possess the best potentiometnc response characteristics and show a linear log[Sal?] vs. EMF response over the concentration range 0.1–3.98×10?6 mol.L?1 in phosphate buffer solutions of pH 5.38 with a detection limit of 2.51×10?6 mol.L?1 and a slope of -57.05 mV per decade. The response mechanism was also investigated by use of a.c. impedance and anion transport across liquid membranes. The electrodes were applied to the determination of salicylate in urine samples with satisfactory results.  相似文献   

13.
《Electroanalysis》2004,16(24):2051-2057
A conducting polymer was electrochemically prepared on a Pt electrode with newly synthesized 3′‐(4‐formyl‐3‐hydroxy‐1‐phenyl)‐5,2′ : 5′,2″‐terthiophene (FHPT) in a 0.1 M TBAP/CH2Cl2 solution. The polymer‐modified electrode exhibited a response to proton and metal ions, especially Al(III) ions. The poly[FHPT] was characterized with cyclic voltammetry, EQCM, and applied to the analysis of trace levels of Al(III) ions. Experimental parameters affecting the response of the poly[FHPT] were investigated and optimized. Other metal ions in low concentration did not interfere with the analysis of Al(III) ions in a buffer solution at pH 7.4. The response was linear over the concentration range of 5.0×10?8–7.0×10?10 M, and the detection limit was 5.0×10?10 M using the linear sweep voltammetry (LSV). Employing the differential pulse voltammetry (DPV), the response was linear over the 1.0×10?9–5.0×10?11 M range and the detection limit was 3.0×10?11 M. The relative standard deviation at 5.0×10?11 M was 7.2% (n=5) in DPV. This analytical method was successfully verified for the analysis of trace amounts of Al(III) ions in a human urine sample.  相似文献   

14.
《Electroanalysis》2003,15(12):1038-1042
A novel gadolinium ion‐selective electrode based on the antibiotic omeprazole as membrane carrier was prepared. The electrode has a linear dynamic range between 1.0×10?1 and 1.0×10?5 M, with a Nernstian slope of 19.3 ± 0.3 mV decade?1 and a detection limit of 5.0×10?6 M. The potentiometric response is independent of the pH of the solution in the pH range 4.0–10.0. The electrode possesses the advantages of short conditioning time, fast response time and especially, very good selectivity over a large number of other cations. The electrode can be used for at least 2 months without any considerable divergence in potentials. It was used as an indicator electrode in potentiometric titration of Gd(III) ions with EDTA.  相似文献   

15.
This determination of salicylate in blood serum is based on application of an immobilized enzyme electrode. Salicylate hydroxylase (E.C.1.14.13.1) is chemically immobilized onto a pig intestine mounted on an oxygen electrode. The signals are monitored amperometrically and the resulting output voltage is read using a simple adapter. The experimental parameters and possible interferences are discussed. Samples containing 1.0 × 10?5?1.87 × 10?3 M (1.6–300 μg ml?1) salicylate were assayed with relative standard deviations between 1.3% and 6% and recoveries between 98.7 and 103%. Results obtained by the proposed method and by the established clinical method for randomly spiked pooled serum samples correlated well (r = 0.99).  相似文献   

16.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

17.
Differential pulse polarography is used to study the iron(III) and titanium(IV) complexes with propylenediaminetetraacetic acid (PDTA). The complexes produce reduction peaks at –0.09 V and –0.32 V (vs. Ag/AgCl/3 M KCl), respectively, at pH 4.5. This is used for a simultaneous, precise determination of iron and titanium. The detection limits in aqueous solutions were 5.0 × 10?7 M for iron and 3.0 × 10?7 M for titanium and linear calibrations were obtained in the range 4.0 × 10?4–6.0 × 10?4 M in both cases. Correct results were obtained for iron trioxide (ca. 2%) and titanium dioxide (ca. 0.3%) in Portland cements, with relative standard deviations of about 3% and 6%, respectively.  相似文献   

18.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

19.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

20.
Cationic iron (III) tetrakis-5, 10, 15, 20-(N-methyl-4-pyridyl) porphyrin (FeIIITMPyP) was intercalated into layered semiconductor KNb3O8 by ion-exchange method. The target product was characterized by XRD, Fourier transform infrared, UV–vis, and TGA. FeIIITMPyP forms an inclined monolayer between Nb3O8 ? nanosheets and endues the nanocomposite with excellent electrochemical catalytic activities. The target nanocomposite modified glass carbon electrode shows good electrocatalytic activities for the oxidation of ascorbic acid (AA); the catalytic mechanism was proposed. Differential pulse voltammetric technique was used for detection of AA in neutral aqueous solution; a detection limit of 4.2?×?10?5 M was obtained, and the modified electrode showed good reproducibility in electrochemical detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号