首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A glucose-sensitive field-effect transistor (FET) with a two-enzyme membrane containing gluconolactonase and glucose oxidase is investigated. The two-enzyme membrane (ca. 1 μm thick) is formed on the ion-sensitive gate of the FET by photopolymerization. The gluconolactonase used was a partially purified product prepared from crude glucose oxidase by gel filtration. A glucose sensor with only purified glucose oxidase has little response for glucose, but the co-immobilization of gluconolactonase and glucose oxidase considerably enhanced the response amplitude of the glucose sensor. The composition of the two-enzyme/photopolymer solution is optimized; gluconolactonase with an activity at least twice that of glucose oxidase is necessary. The linear calibration graph extends from 0.2 to 2 mM glucose.  相似文献   

2.
《Analytical letters》2012,45(12):2535-2542
Abstract

A glucose sensor based on glucose oxidase and a new mediator - 4,5-dimethyl-4′-methylthio-Δ 2,2′-bi-1,3-dithiole (MTTTF) is described. The background for sensor action is the effective MTTTF cation interaction (apparent bimolecular constant (2.0+/-0.5)?106 M?1 s?1 at 25°C and pH 7.0) with reduced glucose oxidase and the high electrochemical rate of mediator transformation.

A glucose sensor was prepared by adsorbing mediator (MTTTF) and glucose oxidase on graphite rods. The sensor responds to glucose at electrode potentials higher than 50 mV vs SCE, but the maximal activity is obtained at a potential of 250 mV. In air saturated solution the electrode shows a non-linear calibration curve with a half-saturation concentration 10.4 mM and Hill coefficient 2.08 at 250 mV. Sensor response changes little at pH 6.5–8.0. The energy of activation of the sensor response calculated from the Arrhenius equation was 64.5 kJ/mol, and the temperature coefficient at 25°C was 9.2%.  相似文献   

3.
A planar platinum electrode was covered by a photopolymer membrane containing glucose oxidase (GOD) to construct an amperometric glucose sensor. The application of a photopolymer system in membrane formation gives the opportunity to manufacture cheap biosensors with good reproducibility by means of automated techniques and to miniaturise sensors using photolithography. The electrodes were pretreated mechanically and chemically resulting in a half-wave potential (E1/2) of the H2O2 oxidation shifted towards more negative potentials. This shift allows the determination of glucose at a low working potential (300 mV vs. SCE) without addition of mediators. The important advantage of such applied potential decreasing lies in minimising the interference of oxidisable substances such as uric acid, bilirubin and paracetamol. The selectivity to ascorbic acid could also be proved without the application of additional protection layers. The glucose sensor developed has a high life-time, selectivity and sensitivity and a linear working concentration range from 0.05 up to 10 mmol/l of glucose. The sensor was used for the glucose determination in human serum samples with a very good correlation to a common photometric reference method. Received: 13 July 1996 / Revised: 11 September 1996 / Accepted: 14 September 1996  相似文献   

4.
The bienzyme system consisting of glucose oxidase and gluconolactonase was investigated using a conventional diffusion-kinetics model for an enzyme-modified field-effect transistor (FET) to clarify the effect of gluconolactonase coimmobilization in a glucose oxidase membrane on the steady-state response amplitude of a glucose sensor based on a FET. The model includes spontaneous and enzymatic hydrolysis reactions of d-glucono-δ-lactone and it elucidated the following experimental results: a glucose sensor with a membrane (about 1 μm in thickness) coimmobilizing these enzymes showed a sufficient response amplitude, whereas without coimmobilization of gluconolactonase no detectable response was observed up to 3 mM glucose; and the response amplitude depended strongly on the amount of lactonase in the membrane. The model also predicted an optimum enzyme ratio for coimmobilization in a membrane.  相似文献   

5.
A new outer layer composition, consisting of polytetrafluoroethylene (PTFE), Kel-F oil, and Nafion, is suggested to minimize the detrimental effect of dissolved oxygen and to extend the linear response range of a glucose oxidase(GOx)-based sensor using nonconducting polymer. The morphology of Kel-F/PTFE/Kel-F/Nafion polymeric laminate was followed during fabrication by SEM. When Kel-F film was formed on the PTFE outer layer, the linear response was extended to 21 mM, at a sensitivity of 2.8 +/- 0.8 nA/mM mm2. We demonstrate that a sensor without Kel-F/PTFE/Kel-F/Nafion outer layer is relatively oxygen dependent, whereas by comparison a sensor with Kel-F/PTFE/Kel-F/Nafion outer layer is oxygen independent. The current of such a glucose sensor implanted in the subcutaneous tissue stabilized within 60 min, and the lag between blood glucose changes and sensor output was within 1 min. The in vivo characteristics of the glucose sensor described show great promise for one-point in vivo calibration.  相似文献   

6.
A novel fabrication of an amperometric glucose sensor by layer after layer approach is described. The sensor electrode is fabricated by arranging a layer of Pt black, a layer of glucose oxidase (GOD) and a layer of stabilizer gelatin on a shapable electro-conductive (SEC) film surface. Finally, the dried layered-assembly is cross-linked by exposing to a diluted glutaraldehyde solution. The performance of the developed sensor is evaluated by a FIA system at 37°C and under a continuous polarization at 0.4 V (vs. Ag/AgCl). The sensitivity of the sensor was dependent on the amount of GOD loaded. The highest sensitivity (3.6 μA/mM cm−2) of the sensor was obtained at a GOD loading of 160 μg/cm2, and the linear dynamic range was extended to 80 mM level when the sensor was covered with a polycarbonate membrane. The sensor shows an extremely stable response for several weeks and a storage stability of over 2 years.  相似文献   

7.
A novel dimethyl sulfoxide (DMSO) sensor using DMSO reductase and film electrodes was constructed. The Au and Ag electrodes were fabricated on slide glass by vacuum deposition and the application of a photolithographic technique. The micro-chamber (4 x 50 x 1 mm, volume 200 microl) was fabricated on a poly(dimethylsiloxane) (PDMS) polymer. The Pt electrode was implanted in a PDMS polymer. DMSO reductase was immobilized on a Au film electrode with bovine serum albumin (BSA)-glutaraldehyde. This sensor could determine DMSO in an unpurged aqueous solution with glucose oxidase (GOD) and catalase (CAT) for oxygen removal. The DMSO sensor showed a linear response within 1 mM DMSO with a correlation coefficient of 0.999. The detection limit was 200 microM (3sigma), and the sensitivity was 23.8 mA M(-1) cm(-2). The relative standard deviations at each concentration were within 3.6%.  相似文献   

8.
A computer-controlled flow-injection system is described for the assay of D-glucose and L-lactic acid in undiluted plasma. Glucose or lactate is quantified by coupling an immobilized glucose oxidase or lactate oxidase membrane with an amperometric sensor; the hydrogen peroxide generated is directly related to the concentration of glucose or lactate. The linear range is 0–40 mM and 0–10 mM for glucose and lactic acid, respectively. The sample frequency is 60 h?1 with a standard deviation of less than 1.5%. Correlation with the results for blood plasma obtained by routine clinical analyzers was good for both glucose and lactic acid.  相似文献   

9.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

10.
《Analytical letters》2012,45(7):1173-1183
Abstract

An amperometric glucose biosensor based on the detection of the reduction of oxygen has been developed by combining an aminated glassy carbon electrode with a polystyrene (PS) membrane containing glucose oxidase (GOD) micelles. The structure of GOD micelles contained in PS membrane was observed by scanning electron microscope. The micelle has a roughly spherical shape, and the enzyme colony is contained inside the micelle. This glucose sensor exhibited good sensitivity with short response time (within 2 min). A good linear relationship was observed in the concentration range of 0.2 mM to 2.6 mM when the applied potential was ? 0.45 V vs. Ag/AgCl.  相似文献   

11.
Specific antibodies labelled with glucose oxidase are immobilized onto a gelatin membrane, which is fixed over an oxygen electrode. The sensor is immersed in a standard glucose solution and a signal is obtained by measuring the consumption of oxygen by the enzyme catalyzed reaction. The response increases linearly with increasing antigen concentration over the range 0.1–100 μg 1?1. A microcomputer is used for data acquisition and processing.  相似文献   

12.
《Analytical letters》2012,45(19-20):1973-1986
Abstract

A very small glucose sensor has been realized, which consists of a gold working electrode with a glucose oxidase immobilized membrane on it, and a gold counter electrode, all made on a sapphire substrate. By using the pH sensitive ISFET as a reference electrode, the potential for a solution, whose pH is constant, can be measured and irreversible metal electrodes, such as gold or platinum, can be used as working electrode and counter electrode. The sensor is very suitable for miniaturizing and mass production, because the Integrated Circuit (IC) fabrication process can be applied. The glucose oxidase immobilized membrane was also deposited by a lift off method, one of the IC processes. A glucose concentration, from 1 to 100 mg/dl, was measured with good linear current output.  相似文献   

13.
A single-step fabrication of a glucose biosensor with simultaneous immobilization of both ferrocene mediator and glucose oxidase in a photocurable methacrylic film consisting of poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) was reported. The entrapped ferrocene showed reversible redox behaviour in the photocured film and no significant leaching of both entrapped ferrocene and enzyme glucose oxidase was observed because of the low water absorption properties of the co-polymer films. From electrochemical studies, ferrocene entrapped in the co-polymer film demonstrated slow diffusion properties. A linear glucose response range of 2-11 mM was obtained at low applied potential of +0.25 V. The glucose biosensor fabricated by this photocuring method yielded sensor reproducibility and repeatability with relative standard deviation of <10% and long-term stability of up to 14 days. The main advantage of the use of photocurable procedure is that biosensor membrane fabrication can be performed in a single step without any lengthy chemical immobilization of enzyme.  相似文献   

14.
A novel multilayer gold nanoparticles/multiwalled carbon nanotubes/glucose oxidase membrane was prepared by electrostatic assembly using positively charged poly(dimethyldiallylammonium chloride) to connect them layer by layer. The modification process and membrane structures were characterized by atomic force microscopy, scanning electron microscopy and electrochemical methods. This membrane showed excellent electrocatalytic character for glucose biosensing at a relatively low potential (?0.2 V). The Km value of the immobilized glucose oxidase was 10.6 mM. This resulting sensor could detect glucose up to 9.0 mM with a detection limit of 128 μM and showed excellent analytical performance.  相似文献   

15.
A biosensing membrane base on ferulic acid and glucose oxidase is synthesized onto a carbon paste electrode by electropolymerization via cyclic voltammetry in aqueous media at neutral pH at a single step. The developed biosensors exhibit a linear response from 0.082 to 34 mM glucose concentration, with a coefficient of determination R2 equal to 0.997. The biosensors display a sensitivity of 1.1 μAmM−1 cm−2, a detection limit of 0.025 mM, and 0.082 mM as glucose quantification limit. The studies reveal stable, repeatable, and reproducible biosensors response. The results indicate that the novel poly-ferulic acid membrane synthesized by electropolymerization is a promising method for glucose oxidase immobilization towards the development of glucose biosensors. The developed glucose biosensors exhibit a broader linear glucose response than other polymer-based glucose biosensors.  相似文献   

16.
Deng Q  Li B  Dong S 《The Analyst》1998,123(10):1995-1999
A novel poly(vinyl alcohol) grafting 4-vinylpyridine self-gelatinizable copolymer was adapted to immobilize glucose oxidase. The reduction of hydrogen peroxide (H2O2) was detected at a Prussian Blue (PB) modified graphite electrode. A stable and sensitive glucose amperometric biosensor is described. The copolymer is a good biocompatible polymer in which the glucose oxidase retains high activity. Moreover, the copolymer can adhere firmly to the inorganic PB membrane. The sensor showed an apparent Michaelis-Menten constant of 18 +/- 0.2 mM and a maximum current density of 1.14 microA cm-2 mM-1. The linear range is from 5 microM to 4.5 mM glucose and the detection limit is 0.5 microM glucose. The catalytic efficiency of PB for the reduction of H2O2 is higher than that for the oxidation of H2O2. Glucose concentrations in serum samples from healthy persons and diabetic patients were determined using the sensor. The results compared well with those provided by the hospital using a spectroscopy method.  相似文献   

17.
Amperometric biosensors are widely used for clinical, food industry and environmental control. A universal platform allowing immobilization of different enzymes could provide a fast and easy way to design new sensors, but the main drawback effect with oxidase based biosensors is the production of hydrogen peroxide. The direct electron transfer is a way to limit the H2O2 production. A modified electrode described by Zhao et al. (Bioelectrochemistry, 69(2):158, 2006), based on immobilization of glucose oxidase/colloidal gold nanoparticles on a glassy carbon electrode by Nafion film, has been used. Its sensitivity is 0.4 μA mM?1 cm?2, reproducibility is 3.0%, detection limit is 0.37 mM, response to glucose is linear up to 20 mM; limit of detection is 0.37 mM and response time is about 1.5 min. This sensor displays a formal redox potential compatible with a direct electron transfer, and has been tested for its response in time and GOx denaturation by X-ray photoelectron spectroscopy. Vanishing of disulphide bonds of GOx has been observed after a period in a saturating solution of glucose but this does not appear determinant in loss of enzyme activity.  相似文献   

18.
The development of a glucose sensor suitable for use with whole blood is described. It is based on anodic oxidation at +700 mV of hydrogen peroxide with a platinum electrode covered with a gas permeable membrane. Glucose reacts with glucose oxidase immobilised on the external side of the membrane, and forms hydrogen peroxide which is able to cross the gas permeable membrane due to its high vapour tension, while other electroactive substances that are important interferents are completely blocked. This principle was discovered several years ago but no practical application was presented up to now. Therefore in this work a number of different commercial membranes were tested, in order to obtain a resistant, rapidly responding and interference free sensor to be used in conjunction with a blood gas measurement apparatus. Coimmobilisation of glucose oxidase and catalase was found to be useful for fast response and recovery of the electrode. Using some of the tested membranes, the linearity range is 1-15 mM, CV 5%, response time 90 s, recovery time for the next sample 120 s. The membrane's working life is 2-3 weeks.  相似文献   

19.
Amperometric enzyme electrode for glucose is described based on the incorporation of glucose oxidase (GOD) into graphite paste modified with tetracyanoquinodimethane (TCNQ). The incorporated enzyme exhibits high activity and long-term stability over the earlier TCNQ-based glucose sensor (1). The sensor provides a linear response to glucose over a wide concentration range. The response time of the sensor is 15-50 sec, and the detection limit is 0.5 mM. Stable response to the substrate was obtained during a period of 35 d. Application of the sensor in the plasma analysis is reported.  相似文献   

20.
A biosensor for glucose utilizing kinetics of glucose oxidase (EC 1.1.3.4.) was developed. The enzyme was immobilized on polyaniline by covalent bonding, using glutaraldehyde as a bifunctional agent. The system showed a linear response up to 2.2 mM of glucose with a response time of 2.5–4.0 min. In addition, the immobilized enzyme had a higher activity between pH 6.5 and 7.5. The system retained 50% of its activity after 30 d of daily use. The optical absorption spectra of the polyaniline/glucose oxidase electrode after glucose had been added to the buffer solution showed that the absorption band around 800 nm had changed considerably when glucose was allowed to react with the electrode. This optical variation makes polyaniline a very promising polymer for use as a support in optical sensor for clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号