首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nickel is not coprecipitated with lanthanum hydroxide in ammonium hydroxide solution because it forms rapidly soluble nickel ammine complexes. This behaviour is used for the separation of Ni matrix from trace elements. These are simultaneously and quantitatively coprecipitated with lanthanum hydroxide at pH 10.0 and separated from the Ni matrix. Seven trace elements (Al, As, Cr, Fe, Ti, V and Zr) in Ni metal and 3 certified elements (Cr, Fe and Ti) in a standard reference material of nickel oxide have been simultaneously determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

2.
A rapid, sensitive and selective procedure for determination of Cr(III) and Cr(VI) in environmental and industrial liquid samples via preconcentration with ammonium pyrrolidine dithiocarbamate (APDC) and determination by means of the EDXRF was described. The effect of pH in the range of 3-11 on the recovery of Cr(III) and Cr(VI) has been investigated separately and in combination of these two species. The influence of organic matter, carbonate species and elements V, Mn and Fe on the recovery of each chromium specie (separately/in combination) over whole pH range was also tested in order to simulate condition occurring in natural waters that usually contain certain amount of dissolved organic matter and carbonate ions. Cr(VI) and Cr(III) have shown different behaviors in reaction with APDC at different pH ranges and therefore it is possible to separate those two species. It was found that Cr(VI) creates complex with APDC only in the pH range from 3 to 5 with quantitative recovery (app. 98%) at pH 3, but there was no recovery of Cr(III) at that pH. On the contrary, in pH range from 6 to 11, reaction with Cr(III) and APDC reviled that the only reaction product is Cr(OH)3 instead of the expected Cr(III)-APDC complex. All reaction products were characterized by IR spectroscopy.  相似文献   

3.
Summary Inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been developed for a simultaneous determination of traces of non-hydride-forming elements in high-purity Mo and molybdenum trioxide. Coprecipitation of diverse elements with lanthanum hydroxide is used to separate them from the Mo matrix and for concentration. Effects of pH and amount of La on the recoveries of diverse elements are discussed. Ten elements (Co, Cr, Cu, Fe, Mn, Ni, Ti, V, Zn, and Zr) are quantitatively recovered and determined. Matrix-matched calibration solutions are used for the determination.  相似文献   

4.
Afghan BK  Dagnall RM  Thompson KC 《Talanta》1967,14(7):715-720
Indium and palladium are determined polarographically with a dropping mercury electrode in a toluene phase, following extraction as the acetylacetonates from aqueous solutions containing 2-10 ppm of the metals (or 0.1-0.5 ppm with a greater ratio of sample volume to solvent volume). Of 31 elements examined, only Co(III), Cr(III), Cu(II), Fe(III), In, Mo(VI), Pd and Ti(IV) gave extractable complexes with reduction waves in the available potential range. Specificity for palladium is obtained by extraction at pH 0.5, and for indium at pH 9 m the presence of cyanide and ascorbic acid as masking agents.  相似文献   

5.
The possibilities of trace element adsorption on different adsorbents are investigated. Three procedures are described' (a) adsorption on activated charcoal at pH 8.5, (b) adsorption on activated charcoal in presence of dithizone at pH 8.5 and (c) adsorption on activated charcoal in presence of sodium diethyldithiocarbaminate at pH 5.5. Of the 23 elements which have been investigated in detail using standardised samples of water the following are determined quantitatively within an error of 10% according to procedure (a) and (b) Au, Cr, Eu, Hg, La, Sc, U and Zn, according to procedure (b) also Cd. The elements Ag, As, Ce, Fe and Se are adsorbed according to procedure (a) and (b) with yields between 60 and 90%, according to procedure (b) also Co. Mo is adsorbed by procedure (c) quantitatively. Cu is not detected after a decay time of 3 days. Sb is adsorbed by all procedures with low yields between 18 and 56%. The elements Br, Ca, Cl, K and Na remain mainly in the solution. The decontamination factors for these elements range between 102 and 106 (Na). Water from the North Sea is analysed by procedure (b).   相似文献   

6.
A new filtering column has been developed on the covalent attachment of chelating functionalities to simple, highly hydrophilic adsorbent material, which can then complex heavy metal ions irreversibly and targeted towards toxic metals removal. The capacity of the chemically modified sorbent (modified charcoal) materials used in this work was evaluated for the above mentioned heavy metal ions in the presence of iron ions and simulated water samples. The methods are based on preconcentrations of the elements of interest on activated carbon and zirconium loaded activated carbon using specific conditions of pH and oxidation states followed by a final determination by neutron activation analysis (NAA). It has been investigated that zirconium loaded activated carbon is able to adsorb As (V), Se (VI), Cr (VI) and Hg (II) at any pH while activated carbon is able to adsorb As (III), Se (IV), Cr (III) and Hg(I) at higher pH. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Crosslinked chitosan-bound FeC nanoparticles (CCBFeCNP) were prepared, and the adsorptive behavior of Cr(III) and Cr(VI) on CCBFeCNP were assessed. At pH 6.0–10.0, CCBFeCNP is selective towards Cr(III) but hardly selective towards Cr(VI). The retained Cr(III) is subsequently eluted with 0.5 mol L−1 HCl. Total chromium is determined after reduction of Cr(VI) to Cr(III) by ascorbic acid. A new method of flow injection using a micro-column packed with CCBFeCNP as solid phase extractant has been developed for speciation of Cr(III) and Cr(VI) in water samples, followed by flame atomic absorption spectrometry. The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recoveries of Cr(III) were systematically investigated. Under optimum conditions, the adsorption capacity of CCBFeCNP for Cr(III) is 10.5 mg g−1 at pH 7.5. The procedure presented was applied to chromium speciation in water samples, and the results were satisfactory.  相似文献   

8.
A method is proposed and explored for speciation of Cr(III) and Cr(VI), selective extraction and preconcentration in various water samples based on dynamic and static techniques. Three newly designed alumina phases-physically adsorbed-2-pyridenecarboxyladehyde-thiosemicarbazone [Al-2PC-TSC (I–III)] were synthesised and characterised. Stability tests and application of [Al-2PC-TSC (I–III)] as inorganic ion exchangers and chelating solid sorbents for various metal ions were studied and evaluated. The distribution coefficient and separation factors of chromium species versus other interfering metal ions were determined to examine the incorporated selectivity into these alumina phases. Quantitative recovery of Cr(VI) was accomplished by [Al-2PC-TSC (I–III)] at pH = 1.0 while Cr(III) was found to be quantitatively recovered on these sorbents at pH = 7.0 with minimal or no interference between these two species under the studied buffering conditions. Selective solid phase speciation and preconcentration of Cr(III) and Cr(VI) in various real water samples were successfully performed and accomplished via a micro-column, with 200 as a preconcentration factor. Selective speciation of Cr(VI) and Cr(III) via preconcentration from seawater and industrial water samples by alumina phases in pH = 1 was found to give percentage recovery values of Cr(VI) in the range 93.5–97.3 ± 3.0–5.0% and 94.0–97.5 ± 3.0–4.0%, for seawater and industrial water samples, respectively.  相似文献   

9.
A PC-controlled on-line preconcentration system (TRACECON) developed by Knapp et al. [11], was connected to a JY-70 Plus simultaneous ICP spectrometer to preconcentrate on-line seven trace elements (Cu, Fe, Zn, Cr, Ni, Mn, V) in biological and environmental samples. EDTrA-cellulose was used as column material. The elemental concentrations were determined by simultaneous ICP-AES. The effect of pH of the sample solution on the enrichment was studied. It was found that the recoveries of chromium and iron depend strongly on the pH of the sample solution. All the elements mentioned were recovered quantitatively at pH 4.0±0.1. The flow rates of sample solution and element solution were optimized. The enrichment factors for seven elements at 5 ml loading volume range from 3.9 for Cu to 7.9 for Zn. The detection limits of all seven elements were improved. The accuracy of the method was tested by the analysis of a number of CRMs of NIST, BCR and NIES. Most results are in good agreement with the certified values.On leave from Shanghai Institute of Metallurgy, Academia Sinica, Shanghai 200050, People's Republic of China  相似文献   

10.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

11.
In the last decade, different methods have been developed for the determination of chromium(VI) concentration in water. These methods use high cost equipment or they require a long preparation time. Because of their drawbacks, this paper describes an on-line, rapid and sensitive procedure for the determination of Cr(VI) concentrations in aqueous solutions via pH and absorption measurements. Only four Cr(VI) species are considered. The effects of pH and of total amount of chromium on the Cr(VI) speciation are investigated. The molar absorptivities of four chromium species at 371 nm are determined by minimising an objective function. The knowledge of these molar absorptivities and the measurements of pH and absorption at 371 nm lead to a rapid determination of total Cr(VI) concentration. The reliability and applicability of the method were confirmed using synthetic water samples.   相似文献   

12.
Jawaid M  Ingman F 《Talanta》1975,22(12):1037-1040
A method for the separation and determination of five major elements in chromite ore (and chrome-bearing refractories), based on complexation of the metals with EDTA is described. After removal of silica, the cations are separated into two groups by passing the solution through a cation-exchange resin (Dowex 50W-X8, in Na-form) in the presence of an excess of the complexing agent. The optimum conditions for the separation are discussed on the basis of exchange constants that were either known or determined. The first group contains Cr and Fe, which emerge in the filtrate at pH between 1·5 and 2·1, whereas A1, Mg and Ca, which are adsorbed on the resin, form another group. Complexometric titrations are used for the subsequent determination of the cations in each group. The method is simpler and more rapid and accurate for routine analysis than the current methods.  相似文献   

13.
Studies were performed to determine the effect of pH on chromium (Cr) binding by native, esterified, and hydrolyzed saltbush (Atriplex canescens) biomass. In addition, X-ray absorption spectroscopy studies were performed to determine the oxidation state of Cr atoms bound to the biomass. The amounts of Cr adsorbed by saltbush biomass were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). For Cr(III), the results showed that the percentages bound by native stems, leaves, and flowers at pH 4.0 were 98%, 97%, and 91%, respectively. On the other hand, the Cr(VI) binding by the three tissues of the native and hydrolyzed saltbush biomass decreased as pH increased. At pH 2.0 the stems, leaves, and flowers of native biomass bound 31%, 49%, and 46%, of Cr(VI), respectively. The results of the XAS experiments showed that Cr(VI) was reduced in some extend to Cr(III) by saltbush biomass at both pH 2.0 and pH 5.0. The XANES analysis of the Cr(III) reaction with the saltbush biomass parts showed an octahedral arrangement of oxygen atoms around the central Cr(III) atom. The EXAFS studies of saltbush plant samples confirmed these results.  相似文献   

14.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

15.
Anodic potentiodynamic and chronoamperometric curves on nickel-chromium alloys (2–50 wt % Cr) are obtained in NaCl solutions at various concentration, pH, and temperature. The dependences of pitting and repassivation potentials on the concentration and temperature are determined for alloy with 20 wt % Cr. The effect of the Cr content and pH on the anodic behavior of the alloys, in particular, the transition from a pitting breakdown of passivity to transpassivation, is shown. Quantitative time dependences of the current in the passive range are obtained and the steady-state values of this current are determined. The corrosion potential of the alloy with 20 wt % Cr is measured. Cathodic voltamograms for passive and chloride-ion-activated surface of the alloy are obtained.  相似文献   

16.
In this study, a syringe was filled with silica gel loaded with 3-aminopropyltriethoxysilane, for the separation and preconcentration of copper, cadmium and chromium prior to their determination by graphite furnace atomic absorption spectrometry (GFAAS) in seawater. For this purpose, a syringe was filled with 0.5 g of modified silica gel and the sample solution was drawn into the syringe and ejected back again. The analyte elements were quantitatively retained at pH 5. Then, the elements sorbed by the silica gel were eluted with 2.0 M of HCl and determined by GFAAS. At optimum conditions, the recovery of Cu, Cd and Cr were 96-98%. Detection limits (3delta) were 6.6, 7.5 and 6.0 micro g L(-1) for Cu, Cd and Cr, respectively. The elements could be concentrated by drawing and discharging several portions of sample successively but eluting only once. Cu, Cd and Cr added to a seawater sample were quantitatively recovered (>95%) in the range of the 95% confidence level. The method proposed in this paper was compared with a column technique. Optimum experimental conditions, reproducibility, precision and recoveries of both techniques are the same, but the syringe technique is much faster, easier and more practical than the column technique. It is a portable system and allows one to make the sorption process in the source of sample. In addition, the risk of contamination is less than in the column technique.  相似文献   

17.
Fifteen elements at trace levels have been determined by neutron activation analysis in the biological standard kale distributed byBowen. La, Br, As, Se, Sc, Ag, Zn, Co, Cr, Sb, Eu, Fe, and Zr have been determined by a nondestructive technique using a high-resolution Ge(Li) detector. Two more elements, Au and Hg, have been determined after radiochemical separation. The nondestructive procedure is shown to yield data in generally good agreement with those obtained by destructive techniques. Potential sources of error in the nondestructive technique are discussed.  相似文献   

18.
Yttrium hydroxide quantitatively coprecipitated Be(II), Ti(IV), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) at pH 9.6 - 10.0 for seawater and pH 10.5 - 11.4 for a table-salt solution. The coprecipitated elements could be determined by inductively coupled plasma atomic emission spectrometry; yttrium was used as an internal standard element. The detection limits ranged from 0.001(6) microg (Mn(II)) to 0.22 microg (Zn(II)) in 100 mL of sample solutions. The operation time required to separate 11 elements was approximately 30 min.  相似文献   

19.
An isotope dilution technique using enriched stable isotopes is applied to determine the interchangeable heavy-metal fraction in soils. Metals in two soil samples are extracted at constant pH, with water, NH4NO3, and EDTA. A spike of enriched stable isotopes is added to the suspension of sample and eluant at the beginning of the extraction. The heavy-metal fraction which exchanges with the added spike during the extraction is called the interchangeable fraction. The extractable heavy-metal fractions are obtained from the heavy-metal concentrations in the eluates. Isotope ratios and concentrations are determined by HR-ICP-MS. The isotope dilution technique described enables both the extractable and the interchangeable heavy-metal fractions to be determined in the same experiment. The combination of both results gives additional information on elemental availability under different conditions that cannot be obtained by analyzing the extractable heavy-metal fractions alone. It is demonstrated that in some cases different eluants just shift the distribution of the interchangeable fraction of an element between the solid and liquid phases (e.g., Pb and Cd in a topsoil sample) while the amount of the interchangeable fraction itself remains constant. For other elements, as Ni, Zn, and Cr, the use of different eluants (different pH, complexing agents) sometimes enlarges the interchangeable fraction. Received: 8 December 1998 / Revised: 30 June 1999 / Accepted: 2 July 1999  相似文献   

20.
An isotope dilution technique using enriched stable isotopes is applied to determine the interchangeable heavy-metal fraction in soils. Metals in two soil samples are extracted at constant pH, with water, NH4NO3, and EDTA. A spike of enriched stable isotopes is added to the suspension of sample and eluant at the beginning of the extraction. The heavy-metal fraction which exchanges with the added spike during the extraction is called the interchangeable fraction. The extractable heavy-metal fractions are obtained from the heavy-metal concentrations in the eluates. Isotope ratios and concentrations are determined by HR-ICP-MS. The isotope dilution technique described enables both the extractable and the interchangeable heavy-metal fractions to be determined in the same experiment. The combination of both results gives additional information on elemental availability under different conditions that cannot be obtained by analyzing the extractable heavy-metal fractions alone. It is demonstrated that in some cases different eluants just shift the distribution of the interchangeable fraction of an element between the solid and liquid phases (e.g., Pb and Cd in a topsoil sample) while the amount of the interchangeable fraction itself remains constant. For other elements, as Ni, Zn, and Cr, the use of different eluants (different pH, complexing agents) sometimes enlarges the interchangeable fraction. Received: 8 December 1998 / Revised: 30 June 1999 / Accepted: 2 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号