首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold, platinum and carbon fibres with 10-μm diameter were mounted in PVC tubes and used as flow sensors in computerized potentiometric and constant-current stripping analysis for mercury, after electroplating ofa gold film onto the fibre surfaces. Compared to gold and glassy carbon disc electrodes, the fibre electrodes gare increased sensitivity and stability and were considerably simpler to handle. The gold-coated carbon fibre electrode gave a higher background than the gold fibre electrode, in both the potentiometric and constant-current stripping modes. Mercury(II) could be determined in presence of a 105-fold (molar) amount of copper(II) by constant-current stripping in media with chloride concentrations below 0.05 M. The detection limit for mercury(II) after 10 min of electrolysis was 45 ng l?1 at the 3 σ level.  相似文献   

2.
Antimony(III) is determined by means of electrolysis at ?0.40 V vs. Ag/AgCl on a gold-coated gold fibre electrode for 0.5–10 min in a redox buffer containing 0.01 M iron(II) in 0.10 M hydrochloric acid, and subsequent stripping with a constant current of 0.50μA either in 2 M hydrochloric acid or in 4 M hydrochloric acid/4 M calcium chloride. Antimony(V) is determined by the same procedure in 4 M hydrochloric acid medium. Bismuth(III) is masked by the addition of iodide to the sample prior to electrolysis. Antimony(III) and antimony(V) are determined by standard addition methods; the whole procedure including digital and graphical evaluation of the results is fully automated. The antimony(V) concentrations in the river water reference sample SLRS-1 and the seawater reference sample NASS-1 were found to be 0.63 and 0.31 μg l?1 with standard deviations of 0.046 and 0.051 μg l?1, respectively (n=15). The certified value for SLRS- 1 is 0.63±0.05 μg l?1; no certified value is available for NASS-1.  相似文献   

3.
Mercury in air was determined after collection in potassium permanganate or sodium carbonate solution. The mercury concentration in these solutions was determined in a computerized flow potentiometric stripping analyzer with a 10-μm gold fibre working electrode, a glassy carbon reference electrode and a platinum counter electrode. After sample electrolysis for 1–10 min, stripping was done in a 1 mg l?1 gold(III) solution in 0.01 M nitric acid/0.01 M sodium nitrate with a constant stripping current of 0.50 μA. Results obtained for flue gas samples were in good agreement with results from cold-vapor atomic absorption spectrometry.  相似文献   

4.
At concentrations above 50 μg l?1, silver(I) is determined in nitric acid medium by means of potentiostatic deposition onto a platinum-fibre electrode and subsequent constant-current stripping in the sample or potentiometric stripping in a potassium permanganate medium. Interference from copper(II) is reduced by a pulsed potential procedure whereby copper deposited onto the fibre electrode is reoxidized intermittently. At concentrations below 50 μg l?1, silver(I) is determined by using a mercury-coated carbon-fibre electrode and constant-current stripping in acetonitrile containing 0.20 M perchloric acid. Potentiostatic deposition for 30 min yielded a detection limit of 0.24 μg l?1 silver(I) at the 3σ level.  相似文献   

5.
Total arsenic in sea water is determined in a fully automated flow system, by means of potentiostatic deposition for 4 min at a 25-μm gold fibre electrode and subsequent constant-current stripping in 5 M hydrochloric acid. Previously the sample is acidified with hydrochloric and arsenic(V) is reduced to arsenic(III) with iodide. During stripping, the potential vs. time transient is recorded with a real-time measurement rate of 26.5 kHz and a potential resolution of 1 mV. Cleaning and regeneration of the gold electrode are fully automated. The total arsenic concentrations in two reference sea waters (NASS-1 and CASS-1) were evaluated by single-point standard addition and found to be 1.58 and 1.14 μg l?1 with standard deviations of 0.39 and 0.28 μg l?1, respectively; certified values are 1.65 ± 0.19 and 1.04 ± 0.07 μg l?1. The arsenic(III) content in these samples was below the detection limit (0.15 μg l?1).  相似文献   

6.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

7.
An automated (24 samples/hour) procedure is described for the determination of lead (0–1000 μg l?1) in human blood based on flow-injection stripping potentiometry. The samples are diluted 20-fold with 0.5 M hydrochloric acid containing 100 mg l?1 mercury and 40 μg l?1 cadmium (II), and a 1.1 ml aliquot is injected into the flow system. With a mercury-coated carbon fibre as working electrode, lead (II) is determined by using cadmium (II) as internal standard and a calibration graph prepared from bovine blood. Analyses of two human blood reference samples yielded results of 335±37 and 691±24 μg l?1 lead, the certified values being 332 and 663 μg l?1, respectively.  相似文献   

8.
Uranium(VI) is determined in an automated flow system by means of constant-current reductive stripping with a mercury film-coated carbon fibre electrode and catechol as adsorptive reagent at pH 8.6 Interference from iron(III) is eliminated by addition of sulphite. Increased linear range between stripping signal and sample uranium(VI) concentration can be obtained by adding, in the computer, several stripping curves, each obtained after a short period of adsorptive accumulation. It is shown that the hanging mercury drop electrode can be used for the determination of uranium(VI) by means of computerized constant current stripping without the need for inert gas bubbling. The results obtained for uranium(VI) in two reference seawater samples, NASS-1 and CASS-1, were 2.90 and 2.68 μg l?1 with standard deviations (n = 8) of 0.57 and 0.75 μg l?1, respectively.  相似文献   

9.
Total bismuth(III) in seawater can be determined either directly after acidification with 0.1 M hydrochloric acid or after co-precipitation with magnesium hydroxide by means of pre-electrolysis for 8 min at —0.90 V vs. SCE at a rotated glassy carbon/mercury film electrode prior to potentiometric stripping analysis. The limits of detection (2σ) are 0.6 and 0.003 nM, respectively. Three Kattegatt surface seawater samples were found to contain bismuth(III) concentrations of 5–12 pM (l–2.5 ng l-1).  相似文献   

10.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

11.
In flow potentiometric stripping analysis for mercury in urine, the samples are acidified with concentrated nitric acid and heated to boiling for 10 min. After cooling, the samples are buffered by the addition of concentrated ammonia and then pre-electrolysed at a gold working electrode for 90 s at -0.25 V vs. SCE at a flow rate of 1.75 ml min-1. The stripping solution is 1 M sodium bromide solution acidified with 0.1 M hydrochloric acid and containing chromium(VI). The detection limit at one sigma level is 0.05 μM. Orchard leaves, sediment and fish muscles are digested in nitric acid at 140°C for 30 min prior to buffering with ammonia and potentiometric stripping analysis for 200 s at -0.20 V vs. SCE at a flow rate of 1.75 ml min-1.  相似文献   

12.
A direct method for the determination of silver in mercury is described. The sample of mercury is introduced into the container of the hanging mercury drop electrode and the anodic voltammograms are recorded in a 0.1 M lithium perchlorate solution in acetonitrile. The anodic peak of silver obtained under these conditions is well separated from the mercury dissolution current. The peak height is proportional to silver concentration over the wide range 2 × 10?6 mol dm?3 (1.6 × 10?6%) to at least 2.0 × 10?2 mol dm?3. No prior separation is needed; the procedure requires less than 20 min. The diffusion coefficient of silver in mercury was determined at several temperatures. It was found that silver in mercury does not form intermetallic compounds with copper, lead, thallium, cadmium, tin and bismuth.  相似文献   

13.
《Electroanalysis》2006,18(24):2486-2489
This paper presents the enhanced analysis of copper on a bismuth electrode upon addition of gallium(III). The presence of gallium alleviates the problems of overlapping stripping signals usually observed between copper and bismuth when using the Bismuth Film Electrode. In addition, it has been found that the presence of gallium improves the reproducibility of the bismuth stripping signal. Simultaneous deposition of copper and bismuth at ?1500 mV for 2 minutes in a supporting electrolyte composed of 0.1 M pH 4.75 acetate buffer with 250 μg L?1 gallium yields well resolved copper and bismuth signals when analyzed with square‐wave anodic stripping voltammetry. Simultaneous analysis of copper and lead yielded linear calibration plots in the range 10 to 100 μg L?1 with regression coefficients of 0.997 and 0.994 respectively. The theoretical detection limit for copper was calculated to be 4.98 μg L?1 utilizing a 2 minutes deposition time. The relative standard deviation for a copper concentration of 50 μg L?1 was 1.6% (n=10).  相似文献   

14.
Rapid-scan staircase voltammetry is used to strip lead plated on a rotating mercury film electrode. With potential steps of 10 mV every 64 μs, the entire stripping of the metals is made in only 4 ms. Noise is reduced by averaging several current measurements on each step. The method allows quantification of 0.1 μg l?1 lead within a total time to less than 4 min. Because of the rapid scan, the rotation of the electrode can continue during the stripping step. Oxygen does not affect the measurements although a small decrease in current is observed. The method is tested on a sample of sea water. Some results are also given for cadmium.  相似文献   

15.
《Electroanalysis》2006,18(6):573-578
The electroanalytical detection of trace mercury(II) at gold ultra‐microelectrode arrays is reported. The arrays consist of 256 gold microelectrodes of 5 μm in diameter in cubic arrangements which are separated from their nearest neighbor by 100 μm. The array was utilized in nitric acid using linear sweep voltammetry where a linear response from mercury additions over the range 10 μg L?1?200 μg L?1 (10?8?10?6 M) was observed with a sensitivity and detection limit of 0.11 nC/μg L?1 and 3.2 μg L?1 (16 nM) respectively from using a deposition time of 30 s at ?0.2 V (vs. SCE). This methodology was explored in 0.1 and 1 M chloride media over the mercury range 10 μg L?1?200 μg L?1 (5×10?8?10?6 M) where similar sensitivities of 0.087 nC/μg L?1 and 0.078 nC/μg L?1 were observed with an identical detection limit. The protocol is demonstrated to be useful for the determination of mercury for analysis of environmental water samples.  相似文献   

16.
Differential-pulse anodic stripping voltammetry at a mercury microelectrode is applied to determine labile and total zinc, cadmium, lead and copper in samples of rain and sea water. The low ohmic drop associated with microelectrodes permits reliable measurements in rain water without addition of supporting electrolyte. The values found in a typical sample were 0.95 μg l?1 Cu, 0.38 μg l?1 Pb, 0.01 μg l?1 Cd and 0.95 μg l?1 Zn, with relative standard deviations in the range 4–18%. The small effects of organic matter at microelectrodes, compared with those at a hanging mercury drop electrode, allow sensitive and reliable measurements of labile metals in surface sea water. Total metal concentrations are determined after acidification to pH 1.5 with hydrochloric acid. The results are compared with those obtained with atomic absorption spectrometry and with differential-pulse anodic stripping voltammetry at conventional mercury electrodes. Satisfactory results were obtained for a reference sea water.  相似文献   

17.
《Electroanalysis》2004,16(7):524-531
In this work we report a new electrode material formed by injection‐moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury‐free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8 μg L?1 to 30 mg L?1 (with deposition times ranging from 30 s to 10 min) with a relative standard deviation of 2.2% (at the 0.5 mg L?1 level) and a limit of detection of 8 μg L?1 Cu(II) for 10 min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap‐water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively  相似文献   

18.
A fast adsorptive stripping voltammetric procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The time of determination of these ions was shortened due to the application of gold as a substrate for lead film. At gold substrate lead film formation and accumulation of Ni(II) and Co(II) complexes with nioxime proceeds simultaneously. To obtain a stable signals for both ions a simple procedure of activation of the electrode was proposed. Calibration graphs for an accumulation time of 20 s were linear from 5×10?9 to 1×10?7 mol L?1 and from 5×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The procedure with the application of a lead film electrode on a gold substrate was validated in the course of Ni(II) and Co(II) determination in certified reference materials.  相似文献   

19.
Cylindrical gold film micro-electrodes are easily produced by plasma-sputtering of gold onto carbon fiber electrodes. The micro-electrodes produced were found to maintain their cylindrical geometry indefinitely, unlike gold wire electrodes of similar dimensions. Application of these electrodes in differential-pulse anodic stripping voltammetry provides a method for quantifying trace levels of mercury(II). Up to 100 μg l?1 Hg(II) the area of the mercury stripping peak varied linearly with mercury concentration; the detection limit was 3.7 μg l?1. With more than 100 μg l?1 Hg(II) a new mercury stripping peak grows in at less positive potentials; its peak height is linear with Hg(II) concentration.  相似文献   

20.
Cathodic stripping methods are described for the determination of traces of thiocyanate ions down to 2 × 10-8 mol l-1 and Cu(II) ions down to 1 × 10-8 mol l-1. The method involves electrolytic accumulation of copper(I) thiocyanate on the surface of a hanging mercury drop electrode followed by stripping of the deposit during the cathodic scan. For the determination of thiocyanate, a copper amalgam electrode can be used. Examples of application of the method for the determination of traces of thiocyanate in common salts, in saliva and urine as well as for the determination of copper(II) ions in tap water are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号