首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4,10-Diaza-15-crown-5, 4,10-diaza-18-crown-6, 4,13-diaza-21-crown-7, and 4,16-diaza-24-crown-8 were prepared by an improved method from the appropriate oligothylene glycol diiodides and diamines. The thermodynamic values of log K, ΔH and ΔS for the interaction of 4,10-diaza-18-crown-6 with Pb2+ and Ag+ were determined by a calorimetric titration method and compared with thermodynamic values for interactions of 4,13-diaza-18-crown-6 with the same cations. The thermodynamic values were found to be different for the two diaza-crown ligands. 4,10-Diaza-18-crown-6 and its 4,13-diaza-crown analog formed precipitates when treated with Co2+, Cd2+, Cu2+, and Ni2+ so that no thermodynamic data are reported for these interactions.  相似文献   

2.
Raman spectra of 18-crown-6, 15-crown-5, and their complexes with Li+, Na+, K+, Cs+, Mg2+, Ca2+ and Ba2+ have been investigated in methanol solution. Normal coordinate calculations are presented for the D3d and Ci-symmetric structures of 18-crown-6. Analysis of the Raman spectra gives information on the ring conformations of the crown ethers and the stoichiometry of complexation. The uncomplexed ethers adopt diverse conformational states in methanol at room temperature, the D3d state being the most stable in 18-crown-6 and various states equally stable in 15-crown-5. Most of the cations form 1:1 or 2:1 crown—metal complexes depending on the cation size relative to the hole size of crown. Exceptionally, Cs+ forms both 1:1 and 2:1 complexes with 18-crown-6. The ring structures in complexes of 18-crown-6 are not much distorted from the D3d one, though the distortion is rather large in the 2:1 Cs2+ and 1:1 Ca+ complexes. Complexes of 15-crown-5 exhibit for types of ring structure depending on the size and charge of the cation. These structures are likely to involve distortion from the gauche or gauche′ conformation about the CC bonds and various conformation about the CO bonds.  相似文献   

3.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

4.
The complexes of Tl+, Pb2+ and Cd2+ cations with the macrocyclic ligand, dicyclohexano-18-crown-6\linebreak(DC18C6) were studied in water/methanol (H2+O/MeOH), water/1-propanol (H2+O/1-PrOH), water/acetonitrile (H2+O/AN), water/dimethylformamide (H2+O/DMF), dimethylformamide/acetonitrile (DMF/AN), dimethylformamide/methanol (DMF/MeOH), dimethylformamide/1-propanol (DMF/1-PrOH) and dimethylformamide/nitromethane (DMF/NM) mixed solvents at 22 °C using differential pulse polarography (DPP), square wave polarography and conductometry. In general, the stability of the complexes was found to decrease with increasing concentration of water in aqueous/non-aqueous mixed solvents with an inverse relationship between the stability constants of the complexes and the concentration of DMF in non-aqueous mixed solvents. The results show that the change in stability of DC18C6.Tl+, vs the composition of solvent in DMF/AN and DMF/NM mixed solvents is apparently different from that in DMF/MeOH and DMF/1-PrOH mixed solvents. While the variation of stability constants of the DC18C6.Tl+ and DC18C6.Pb2+ complexes vs the composition of H2+O/AN mixed solvents is monotonic, an anomalous behavior was observed for variations of log Kf vs the composition of H2+O/1-PrOH and H2+O/MeOH mixed solvents. The selectivity order of the DC18C6 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+.  相似文献   

5.
The macrocycle-mediated flux of Hg2+ individually and of Hg2+ and Mn+ (Mn+ = K+, Tl+, Ag+, Sr2+, Cd2+, or Pb2+) in cation mixtures has been measured at 25°C in a I M HNO3CHCl31 M HNO3 liquid membrane system. Of the ten macrocycles used, 18-crown-6(18C6), dicyclohexano-18-crown-6(DC18C6), and 21-crown-7(21C7)were most effective in transporting Hg2+ individually. Relative cation fluxes in the metal ion mixtures correlated well with relative log K values for cation--macrocycle interaction and with relative partition coefficients for the distribution of the resulting complex between the aqueous and organic phases  相似文献   

6.
《Analytical letters》2012,45(4):449-465
Abstract

Complexation constants of Pb2+ and Cd2+ nitrates with five crown compounds (18-crown-6, dicyclohexyl-18-crown-6, benzo-15-crown-5, dibenzo-24-crown-8 and 12-crown-4), have been determined by d.c. and a.c. polarographic measurements in aqueous medium using 0.1 M HNO3 as supporting electrolyte. The complexes of lead with 18-crown-6 and dicyclohexyl-18-crown-6 are very stable which may be attributed to the partially covalent bonds formed by this metal ion.  相似文献   

7.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

8.
以2-苯氧乙醇为起始剂, 合成了两种新型氮支套索冠醚: N-(2-苯氧乙基)单氮杂-18-冠-6 (18CE)与N-(2-苯氧乙基)单氮杂-15-冠-5 (15CE). 通过红外光谱、核磁共振氢谱和紫外光谱表征了新冠醚及其中间体的结构. 用电导滴定法研究了两冠醚与Na, K, Ag, NH4+, Ni2+, Cu2+, Pb2+和Co2+在25 ℃的配位作用, 计算了1∶1配合物的稳定常数. 实验结果表明, 由于N-(2-苯氧乙基)引入氮杂冠醚环和参与配位, 18CE和15CE配合物的稳定常数分别比单氮杂-18-冠-6, N-(2-羟基乙基)单氮杂-18-冠-6, N-(2-甲氧基乙基)单氮杂-18-冠-6和单氮杂-15-冠-5, N-(2-甲氧乙基)单氮杂-15-冠-5, N-(2-甲氧乙基)单氮杂-15-冠-5的对应配合物明显提高. 配合物的稳定常数和紫外光谱皆提供了支链的苯氧基参与配位的信息.  相似文献   

9.
The transport experiments of Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Ag+ and Pb2+ metal cations were carried out by dibenzo-18-crown-6 (DB18C6), dibenzyl-diaza-18-crown-6 (Dibenzyl-diaza-18C6) and di-tert-butyl-dibenzo-18-crown-6 (Di-tert-butyl-DB18C6) using chloroform (CHCl3), 1,2-dichloroethane (1,2-DCE) and nitrobenzene (NB) organic solvents as liquid membranes. The source phase contained equimolar concentration of these metal cations and the source and receiving phases being buffered at pH=5 and pH=3, respectively. The obtained results show that the selectivity and the efficiency of transport for these heavy metal cations change with the nature of the ligand and also the organic solvents, which were used as liquid membranes in these experiments. A good selectivity was observed for silver (I) ion by dibenzyl-diaza-18C6 in all membrane systems. Dibenzo-18C6 and di-tert-butyl-DB18C6 showed the highest transport efficiency for cobalt (II) ion. The effect of stearic acid on transport efficiency was also investigated and the results show that the efficiency of transport of the heavy metal cations increases in the presence of this organic acid.  相似文献   

10.
《Analytical letters》2012,45(17):1937-1946
Abstract

The complexes formed by the Na+, K+, Rb+, Ca2+, UO2+ 2, and Ag+ cations with the macrocyclic polyethers 18-crown-6, benzo-15-crown-5, and dicyclohexy1-18-crown-6 are investigated. The stability constants of these complexes have been determined potentiometrically in (90% vol.) ethanol-water solutions at 25[ddot]C and an ionic strength μ= 0.1 (achieved with tetrabuty lammonium perchlorate). The stablity of the investigated complexes was interpreted in terms of “caging” the metal cation into the cavity of the macrocyclic ligand, an effect which depends on the ratio of the diameter of the complexed cation over the diameter of the cavity of the complexing ligand.  相似文献   

11.
Abstract

7Lithium NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 12-crown-4, 15-crown-5 and benzo-15-crown-5 in acetonitrile solution. A competitive 7Li NMR technique was also employed to probe the complexation of Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ ions with the same crown ethers. In all cases, the stability of the resulting 1:1 complexes was found to decrease in the order 15-crown-5 > benzo-15-crown-5 > 12-crown-4. Ca2+ and Cd2+ ions formed the most stable complexes in the series.  相似文献   

12.
Luminescent properties of 5-chloro-8-hydroxyquinoline (CHQ) free and appended tothe amines in diaza-18-crown-6 (A218C6) were determined. These propertieswere compared to those of bivalent alkaline earth and post-transition metal ioncomplexes of the appended macrocycle (CHQ-A218C6). The luminescent properties were foundto be pH dependent. In the pH range 3 to 7, CHQ-A218C6 forms luminescent complexes withonly Zn2+ and Cd2+. At higher pH values, luminescent complexes wereformed with Mg2+, Ca2+, Sr2+, and Ba2+. No luminescent complex was formed by Hg2+ over the pH range studied. This lariat macrocycle could findapplication as a chemosensor for several of the metal ions studied.  相似文献   

13.
The stability of complexes formed by a series of Schiff-base lariat ethers, derived from 4,13-diaza-18-crown-6, 1 with Ag+, Pb2+, Cu2+ cations, has been comparatively determined, in methanol: dichloromethane solution. We present here the synthesis and an interesting competitive potentiometry method useful for the stability constant determination for a new family of Schiff-base bibracchial lariat ethers. The stability constants and the selectivity in competitive complexation of Ag+, Pb2+ and Cu2+ cations by macrocyclic receptors 1–7 (L), can be accurately evaluated and species distribution diagrams can be calculated for individual system. In all cases further functionalization of bibracchial lariat ethers 2–7 is accompanied by an increasing of the selectivity, relative to the complexes of the initial 4,13-diaza-18-crown-6 macrocycle 1.  相似文献   

14.
The complexation reactions between some rare earth metal cations (Ln; Y3+, La3+ and Ce3+) with 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6), benzo-18-crown-6 (B18C6) and decyl-18-crown-6 (Dec18C6), have been studied in methanol–acetonitrile (MeOH–AN) and methanol–water (MeOH–H2O) binary mixtures using a competitive spectrophotometric method. 2-(2-thiazolylazo)-4-methyl phenol (TAC or L) was used as colorimetric complexant. It was found that the selectivity order of TAC for Ln cations is highly changed with changing the composition of the mixed solvents. Moreover, as the concentration of acetonitrile increases in MeOH–AN binary mixture, the stability of Ln–TAC complexes increases and passes through a maximum at a certain mole fraction of acetonitrile. In addition, the stability of Ln–crown ether complexes increases with increasing the concentration of methanol in MeOH–H2O and acetonitrile in MeOH–AN binary solutions. A non linear behaviour was observed for variation of stability constants of all complexes versus the composition of the mixed solvents. The results show that 18C6 generally forms more stable complexes with La3+ and Ce3+ cations than DC18C6 in methanol and MeOH–H2O binary mixtures, while this sequence is reversed in the methanol-acetonitrile binary mixtures which are rich with respect to acetonitrile.  相似文献   

15.
[7Li] NMR measurements were used to determine the stoichiometry and stability of Li+ complexes with 18-crown-6 and dicyclohexyl-18-crown-6 in nitromethane and acetonitrile solutions. A competitive [7Li] NMR technique was also employed to probe the complexation of Ba2+, Pb2+, Cd2+, and UO22+ ions with the same crown ethers–solvent systems. All the resulting 1 : 1 complexes were more stable in nitromethane than acetonitrile solution. In all cases, the stability of both crown complexes in nitromethane and acetonitrile varied in the order Pb2+ > Ba2+ > Li+ > Cd2+ > UO22+.  相似文献   

16.
The synthesis of two new tritopic crown ligands (L1 and L2) bearing two benzo-15-crown-5 lateral moieties linked through a dibenzo-trioxa chain together with their interaction with metal ions, in acetonitrile and acetonitrile–water (50%, v/v) solutions is reported. The influence of K+, Na+, Li+, Ca2+, Ba2+, Cu2+, Zn2+, Cd2+, Pb2+ and Al3+, on the spectroscopic properties of these diaza-polyoxa ligands was investigated by absorption spectrophotometry and in some cases by fluorescence emission spectroscopy. Coordination with alkaline (Na+, K+ and Li+) and alkaline earth (Ca2+and Ba2+) metal ions is assumed to be weak with both macrobicyclic ligands, while the interaction with both imine and amine derivatives causes a minor effect in the absorption spectra. Coordination with Cu2+, Zn2+ and Pb2+ in acetonitrile solution causes a major change in the absorption spectra of the chromophores. In the case of Cu2+, addition of the metal to L1 or L2 leads to a blue–violet complex in solution with an absorbance maximum centred at 590 nm. Interaction of the Schiff-base L1 with Pb2+ leads to a short wavelength shift in the absorption bands, comparable with the ZnL1 complex. Presence of transition metal ions such as Co2+, Ni2+and Cd2+ do not remarkably affect the absorption spectra of L1 and L2 in solution. Trivalent aluminium has a modest effect in the absorption bands of both N2O13 donor set bismacrocyclic ligands. The fluorescence study of L2 in the presence of Na+, K+, Ca2+, Ba2+, Co2+, Cu2+, Ni2+, Pb2+ and Al3+shows that Cu2+, Pb2+ and Al3+ complexes form non-fluorescent complexes.  相似文献   

17.
A conductance study of the interaction between Pb2+ ion and 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexyl-18-crown-6 (DC18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DAI8C6), dibenzopyridino-18-crown-6 (DBPy18C6), and dibenzyldiaza-18-crown-6 (DBzDA18C6) in acetonitrile–dimethyl sulfoxide mixtures was carried out at various temperatures. The formation constants of the resulting 1:1 complexes were determined from the molar conductance–mole ratio data and found to vary in the order DA18C6 > A18C6 > DBzDA18C6 > DC18C6 > 18C6 > B18C6 > DBPy18C6. The enthalpy and entropy of complexation reactions were determined from the temperature dependence of the formation constants. In all cases, the resulting complexes are enthalpy stabilized, but entropy destabilized. A linear relationship is observed between log K f of different complexes and mole fraction of acetonitrile in the solvent mixtures. The TS 0 vs. H 0 plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of an enthalpy–entropy compensation in the complexation reactions.  相似文献   

18.
Stability constants ( 1 NB ) of the 1:1 cationic complexes of Li+ Na+, K+ Ca2+ Sr2+ and Ba2+ with benzo-18-crown-6 (B18C6), Ca2+ and Sr2+ with 18C6 and dibenzo-18C6 and Li+, Na+, Ca2+, Sr2+ and Ba2+ with dibenzo-24-crown-8 in a nitrobenzene (NB) solution saturated with water (w) were determined at 25°C by ion-transfer polarography. From these values, distribution constants (K D,ML) of the 18C6-derivative complex cations between the w- and NB-phases were evaluated using the thermodynamic relation:K D,ML =K 1 NB , whereK (mol dm–3) is an overall equilibrium constant of the processes related to the complexation in the w-phase. The data on the distribution of the 18C6-derivative complex cations between the two phases and the complexation in the NB-phase were examined on the basis of an increase in the number of water molecules hydrated to the species relevant to these processes. The 18C6 derivatives showed higher solubilities in the NB-phase than in the w-phase by complexing with the univalent-metal ions, while, for the divalent-metal ions, the derivatives showed lower solubilities in the NB-phase.  相似文献   

19.
The complexation of Tl+, Pb2+and Cd2+ cations by macrocyclic ligands, aza-18-crown-6 (L1) and dibenzopyridino-18-crown-6 (L2) was studied in some binary mixtures of methanol (MeOH), n-propanol (n-PrOH), nitromethane (NM) and acetonitrile (AN) with dimethylformamide (DMF) at 22 °C using DC (direct current) and differential pulse polarographic techniques (DPP). The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in half-waves or peak potentials of the polarographic waves of metal ions against the ligand concentration. In all of the solvent systems, the stability of the resulting 1:1 complexes was found to be L1 > L2. The selectivity order of the L2 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+ and the selectivity of the L1 ligand for Pb2+ ion was greater than that of Tl+ ion. The results show that the stability of the complexes depends on the nature and composition of the mixed solvents. There is an inverse relationship between the stability constants of the complexes and the amount of dimethylformamide in the mixed solvent systems.  相似文献   

20.
The complexation reactions between Mg2+,Ca2+,Sr2+ and Ba2+ metal cations with macrocyclic ligand, dicyclohexano-18-crown-6 (DCH18C6) were studied in methanol (MeOH)–water (H2O) binary mixtures at different temperatures using conductometric method . In all cases, DCH18C6 forms 1:1 complexes with these metal cations. The values of stability constants of complexes which were obtained from conductometric data show that the stability of complexes is affected by the nature and composition of the mixed solvents. While the variation of stability constants of DCH18C6-Sr 2+ and DCH18C6-Ba2+versus the composition of MeOH–H2O mixed solvents is monotonic, an anomalous behavior was observed for variations of stability constants of DCH18C6-Mg2+ and DCH18C6-Ca2+ versus the composition of the mixed solvents. The values of thermodynamic parameters (ΔHc°, ΔSc°) for complexation reactions were obtained from temperature dependence of formation constants of complexes using the van’t Hoff plots. The results show that in most cases, the complexation reactions are enthalpy stabilized but entropy destabilized and the values of thermodynamic parameters are influenced by the nature and composition of the mixed solvents. The obtained results show that the order of selectivity of DCH18C6 ligand for metal cations in different concentrations of methanol in MeOH–H2O binary system is: Ba2+>Sr2+>Ca2+> Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号