首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For plastic electronics and optics, the fabrication of smooth, transparent and stable crack-free inorganic oxide films (and patterning) on flexible polymeric substrates with strong bonding strength and controllable thickness from nanometers to micrometers is a key but still remains a challenge. Among versatile inorganic oxides, silica oxide film as SiO x is especially important because this semiconductor material could provide crucial properties in devices or serve as a base layer for further multilayer construction. In this paper, we describe a new interface-directed sol-gel method to fabricate flexible high quality silicon oxide film onto commodity plastics. The resulting crack-free silica film has strong covalent bonding with polymer substrates, homogeneous morphology with ultralow roughness, highly optical transparency, tunable thickness from nm to μm, and easy patterning ability. Such fabrication strategy relies on a novel photocatalytic oxidation reaction by photosensitive ammonium persulfate (APS), which is able to fabricate highly reactive hydroxyl monolayer surface on inert polymeric substrates. This kind of hydroxylated surface could serve as nucleation and growth sites to initiate surface sol-gel process. As a result, well-defined SiO x film deposition (gelation) occurs, and patterned hydroxylation regions could be easily utilized to induce the formation of patterned oxide film arrays. Our strategy also excludes the requirements of clean room and vacuum devices so as to fulfill low-cost and fast fabrication demands. Two application examples from such high quality SiO x layer onto plastics are given but should not be limited within these. One is that oxygen permeation rate of SiO x deposited polymer film decreases 25 times than pristine polymer substrate, which is good for the potential packaging materials. The other one is that silanization monolayer, for example, 3-aminopropyltriethoxysilane (APTES), could be successfully constructed onto silica layer through classical silanization reaction, which is applicable for many potential purposes, for instance, proteins could be accordingly immobilized onto plastic support with effective signal-to-background ratio. Moreover, we further demonstrate that this interface-directed sol-gel strategy is a general method which could be successfully extended to other high quality oxide film fabrication, e.g., TiO2.  相似文献   

2.
Multifractal (MF) analysis of space forms on the surfaces of thin layers of Zn x Cd1 ? x Te solid solution precipitated onto a Si(111) substrate via the hot wall approach is performed. AFM images of film surfaces are used for MF analysis. The parameters of MF spectra are determined for the film surfaces of the above system. It is shown that the MF functions of system correspond to their canonical forms, and the resulting computational procedure can be applied to describe and analyze the state of spatial fractal structures that form on a layer’s surface. The quantitative relationships between the parameters of the MF spectrum of a film’s surface and its conditions of precipitation are revealed.  相似文献   

3.
A mercury-film electrode with iridium as the substrate has been developed. Various metals were considered as potential electrode substrates, but only iridium was found to possess the desirable properties as a Hg-film substrate. After testing several pretreatment procedures the recommendation is to polish with 1 μm diamond, rinse with chromic acid and cathodize at −2.0 V vs. SCE. Different deposition conditions and solutions were tested for optimizing the conditions of film formation. The use of a square-wave deposition potential and 0.1 M HClO4 as electrolyte resulted in a dramatic improvement in the formation of a stable Hg film. Finally a complete procedure is given for the formation of a stable Hg film on iridium.  相似文献   

4.
《Chemical physics letters》1985,115(2):130-133
Enhanced Raman scattering effect on WO3 thin films, sputtered on a silicon substrate coated-silver thin film, has been evidenced using the MOLE microprobe. The silver surface is very rough and the observed ERS effect seems to be due to the formation of tungsten bronze at the WO3/Ag interface. Thermal treatment favours silver diffusion in the WO3 film and the formation of silver tungstate.  相似文献   

5.
The influence of the uppermost substrate layer on the structural properties of sputtered lithium cobalt oxide (LiCoO2) is discussed in this work. For this purpose, bare, oxidized, and platinum-coated silicon wafers, as well as stainless steel and titanium sheets, were used as substrates. The resulting crystal structure of LiCoO2 deposited on these substrates was analyzed and discussed. The LiCoO2 thin films were deposited by RF magnetron sputtering with different film thicknesses. A subsequent annealing step at 700 °C was performed to induce the crystallinity of LiCoO2. The crystal orientation was determined by X-ray diffraction. The obtained results show a strong dependency of LiCoO2's crystal structure on the surface the film is deposited on. However, the strong influence of the film thickness reported in previous publications could not be observed. If LiCoO2 is deposited on the substrates with a metallic surface, a strong (003) preferential orientation is obtained for a wide range of film thicknesses. In contrast, sputtering of LiCoO2 on bare and on oxidized silicon wafers results in a (101) dominated crystal structure for the different film thicknesses. These experiments show the importance of the characterization of LiCoO2's crystal structure in the intended battery setup.  相似文献   

6.
The formation of nanometer‐sized gaps between silver nanoparticles is critically important for optimal enhancement in surface‐enhanced Raman scattering (SERS). A simple approach is developed to generate nanometer‐sized cavities in a silver nanoparticle thin film for use as a SERS substrate with extremely high enhancement. In this method, a submicroliter volume of concentrated silver colloidal suspension stabilized with cetyltrimethylammonium bromide (CTAB) is spotted on hydrophobic glass surfaces prepared by the exposure of the glass to dichloromethysilane vapors. The use of a hydrophobic surface helps the formation of a more uniform silver nanoparticle thin film, and CTAB acts as a molecular spacer to keep the silver nanoparticles at a distance. A series of CTAB concentrations is investigated to optimize the interparticle distance and aggregation status. The silver nanoparticle thin films prepared on regular and hydrophobic surfaces are compared. Rhodamine 6G is used as a probe to characterize the thin films as SERS substrates. SERS enhancement without the contribution of the resonance of the thin film prepared on the hydrophobic surface is calculated as 2×107 for rhodamine 6G, which is about one order of magnitude greater than that of the silver nanoparticle aggregates prepared with CTAB on regular glass surfaces and two orders of magnitude greater than that of the silver nanoparticle aggregates prepared without CTAB on regular glass surfaces. A hydrophobic surface and the presence of CTAB have an increased effect on the charge‐transfer component of the SERS enhancement mechanism. The limit of detection for rhodamine 6G is estimated as 1.0×10?8 M . Scanning electron microscopy and atomic force microscopy are used for the characterization of the prepared substrate.  相似文献   

7.
《Analytical letters》2012,45(16):2731-2739
Fluorophores overlaid on an optical interference mirror composed of a metal and thin dielectric layer demonstrate enhanced fluorescence. Fluorescence is also enhanced by silver nanostructures such as silver island films, which excite localized surface plasmon resonance. An optical interference mirror surface was overlaid with a silver island film to amplify the fluorescence enhancement. The optimal thickness of the silver island film (100 nm) was evaluated from transmittance and surface roughness measurements. At this thickness, the fluorescence was amplified sixteen-fold. The thickness of the interference layer was optimized at 40 nm providing a one hundred-sixty fold fluorescence enhancement of rhodamine B. However, only a four-fold improvement in sensitivity was achieved for the determination of a labeled streptavidin using biotin immobilized on the silver island film interference mirror.  相似文献   

8.
The paper reports on the deposition of thin antimony (Sb)-doped SnO2 films onto gold and silver substrates using magnetron sputtering. The influence of the SnO2:Sb film on the electrochemical and surface plasmon resonance properties is investigated. The best results in terms of stability, electrochemical and plasmonic characteristics are obtained for SnO2:Sb of 8.5 nm thickness deposited on silver substrates.  相似文献   

9.
聚合物表面自组装电极的制备   总被引:1,自引:0,他引:1  
采用在聚合物表面制备选择性化学镀电极的方法, 将具有电极结构的模板置于聚萘二甲酸乙二醇酯(PEN)基片表面上, 用紫外光进行照射, 使辐照区域表面形成羧基, 然后通过配位作用使银离子附着到表面上, 再经过紫外光照射还原出金属银颗粒, 最后以表面的金属银颗粒为催化剂进行特定区域化学镀铜形成电极. 利用四探针法测得电极的电阻率为5.063×10-2 Ω·mm2/m, 与纯金属铜的电阻率的数量级相同.  相似文献   

10.
Cyanide-responsive ion-selective electrodes have been developed based on thin tellurium-doped silver selenide membranes electrodeposited on platinum substrates. The chemical composition of the electroplated film membranes could be expressed by the general formula Ag2+δSe1?xTex (where 0.2 < δ < 0.8 and 0.2 ? × ? 0.1). These electrodes exhibit a linear response in cyanide solutions with concentrations ranging from 10?2 to 10?6 M, with a slope of the electrode function of about 90 mV (pCN)?1 (i.e., lower than the theoretically predicted double-Nernstian slope). These electrodes showed very stable behaviour during long-term investigation (several months). The conditions for the electrochemical preparation of cyanide-responsive silver chalcogenide membranes are discussed both from theoretical and practical points of view. X-ray diffraction, energy-dispersive x-ray fluorescence microanalysis (EDAX) and scanning electron microscopy (SEM) were used to examine the membrane composition, structure and surface morphology.  相似文献   

11.
Environmentally acceptable lead-free ferroelectric KNbO3 (KN) or NaNbO3 (NN) and K0.5Na0.5NbO3 (KNN) thin films were prepared using a modified sol-gel method by mixing potassium acetate or sodium acetate or both with the Nb-tartrate complex, deposited on the Pt/Al2O3 and Pt/SiO2/Si substrates by a spin-coating method and sintered at 650°C. X-ray diffraction (XRD) analysis indicated that the NN and KNN films on the Pt/SiO2/Si substrate possessed a single perovskite phase, while NN and KNN films on the Pt/Al2O3 substrate contained a small amount of secondary pyrochlore phase, as did KN films on both substrates. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses confirmed that roughness R q of the thin KNN/Pt/SiO2/Si film (?? 7.4 nm) was significantly lower than that of the KNN/Pt/Al2O3 film (?? 15 nm). The heterogeneous microstructure composed of small spherical and larger needle-like or cuboidal particles were observed in the KN and NN films on both substrates. The homogeneous microstructure of the KNN thin film on the Pt/SiO2/Si substrate was smoother and contained finer spherical particles (?? 50 nm) than on Pt/Al2O3 substrates (?? 100 nm). The effect of different substrates on the surface morphology of thin films was confirmed.  相似文献   

12.
A variety of Ag nanoparticles/oxide mesoporous films with templated silica, titania, and zirconia was synthesized by sol–gel method at glass, aluminum, and silicon substrates using metal alkoxides (tetraethoxysilane, titanium tetraisopropoxide, and zirconium tetrapropoxide) and AgNO3 as precursors of oxide films and Ag nanoparticles, respectively, and Pluronic P123 as a template agent. Oxide films alone and Ag/oxide composites were characterized using hexane adsorption, X-ray diffraction (XRD), Raman and ultraviolet (UV)/vis spectroscopies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. The distribution of Ag nanoparticles within the films, their sizes, intensity, and position of surface plasmon resonance (SPR) absorbance band at λ = 400 nm, as well as the textural and structural characteristics of whole films depend on treatment temperature, types of substrates and oxide matrices, oxide crystallization, and Ag content. Ag nanoparticles form preferably on the outer surface of the films under lower sintering temperatures if the amount of loaded silver is low. Oxide crystallization (e.g., TiO2) promotes silver embedding into the outer film layer. At higher silver content (≥10 at.%) and higher calcination temperature (873 K), silver nanoparticles could be entrapped more uniformly along the film profile because of more intensive evaporation of silver droplets from the outer surface of the films on heating.  相似文献   

13.
Li Wang 《Talanta》2010,82(1):113-2112
A method to fabricate AuAg bimetallic nanoparticles film by H2O2-mediated reduction of silver was reported. Gold nanoparticles (Au NPs) were first adsorbed onto the surface of a self-assembled 2-aminoethanethiol monolayer-modified gold film or 3-aminopropyltriethoxysilane (APTES) monolayer-modified quartz slide. Upon further treatment of this modified film with the solution containing silver nitrate (AgNO3) and H2O2, silver was deposited on the surface of Au NPs. The size of the AuAg bimetallic particles could be readily tuned by manipulating the concentration of H2O2. Surface plasmon resonance (SPR) was used to investigate the process, the deposition of silver on Au NPs modified gold film resulted in an obvious decrease of depth in the SPR reflectance intensity and minimum angle curves (SPR R-θ curves), which may be utilized for the quantitative SPR detection of the analyte, H2O2. Combination of the biocatalytic reaction that could yield H2O2 by using the enzyme, glucose oxidase, with the deposition of silver may enable the design of a glucose biosensor by SPR technique. Furthermore, we evaluated the AuAg bimetallic nanoparticles film for their ability to be an effective substrate for surface-enhanced Raman scattering (SERS).  相似文献   

14.
Lithium niobate LiNbO3 thin films were deposited onto silicon (111) Si and sapphire (001) AI2O3 single crystal substrates by the pyrosol and/or r.f. sputtering processes. A matrix of experiments was designed to determine the effects of several experimental parameters on the resulting film quality (stoichiometry, crystallization state) and properties. Under optimized conditions, requiring the combination of the two above-mentioned deposition techniques, <001 > oriented polycrystalline LiNbO3 films were grown which exhibit homogeneous and columnar grain structures with the <c > -polar axis normal to the substrate surface.  相似文献   

15.
In this contribution, surface-enhanced Raman spectroscopy (SERS) based on conical holed glass substrates deposited with silver colloids was reported for the first time. It combines the advantages of both dry SERS assays based on plane films deposited with silver colloids and wet SERS assays utilizing cuvettes or capillary tubes. Compared with plane glass substrates deposited with silver colloids, the conical holed glass substrates deposited with silver colloids exhibited five-to ten-folds of increase in the rate of signal enhancement, due to the internal multiple reflections of both the excitation laser beam and the Raman scattering photons within conical holes. The application of conical holed glass substrates could also yield significantly stronger and more reproducible SERS signals than SERS assays utilizing capillary tubes to sample the mixture of silver colloids and the solution of the analyte of interest. The conical holed glass substrates in combination with the multiplicative effects model for surface-enhanced Raman spectroscopy (MEMSERS) achieved quite sensitive and precise quantification of 6-mercaptopurine in complex plasma samples with an average relative prediction error of about 4% and a limit of detection of about 0.02 μM using a portable i-Raman 785H spectrometer. It is reasonable to expect that SERS technique based on conical holed enhancing substrates in combination with MEMSERS model can be developed and extended to other application areas such as drug detection, environmental monitoring, and clinic analysis, etc.  相似文献   

16.
This article presents a simple, fast and low-cost method to fabricate a flexible UV light photomask. The designed micropatterns were directly printed onto transparent hybrid composite film of biaxially oriented polypropylene coated with silica oxide (BOPP-SiO x ) by an inkjet printer. Compared to the conventional chrome-mask, it is of advantages such as suitable for non-planar substrates, scalable for large area production, and extreme low cost. Combined with the confined photo-catalytic oxidation (CPO) reaction, the printed flexible BOPP-SiO x photomask was successfully used to pattern the shape of wettability of organic polymer surfaces, and then polyaniline patterns were deposited on the modified substrates with strong adhesion. With the above photomasks, the polyacrylic acid graft chains were duplicated on the poly (ethylene terephthalate) (PET) and BOPP substrates by photografting polymerization. We grafted polyacrylic acid (PAA) on a non-planar plastic substrate with this soft and thin plastic photomask. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the surface morphology and thickness of ink layers of the printed photomask. Optical microscopy was used to characterize the deposition polyaniline micropatterns. It was found that the desired patterns were precisely printed on the modified polymer films and were applied in modifying organic polymer substrates. The printed photomask could be exploited in the fields such as prototype microfluidics, micro-sensors, optical structures and any other kind of microstructures which does not require high durability and dimensional stability.  相似文献   

17.
Surface-enhanced Raman scattering (SERS) spectra of four amphiphilic nucleolipids in single-layer Langmuir-Blodgett (LB) films deposited on silver island film substrates from pure water and complementary nucleotide-containing subphase and corresponding powder normal Raman spectra were obtained. The analysis of these spectra indicates that the SERS effect is mainly caused by a charge-transfer mechanism, and only the nucleobase headgroup moieties and complementary bases combined with them through hydrogen bonds, which are directly in contact with the silver island film substrates, could be enhanced. For the amphiphilic nucleolipids with the identical nucleobase headgroups, the SERS spectra of the LB films are similar, implying that the orientations of these nucleobase moieties on the silver substrates are analogous. However, the nucleobase takes different orientations on the silver substrates before and after complementary binding. The nucleobases in the LB films deposited from pure water are nearly lying flat on the silver surface, while the complementary binding pairs transferred from the air/water interface tend to take an end-on orientation on the metal surface.  相似文献   

18.
自从Hartstcil。等人用衰减全反射技术(AT则得到覆盖在银岛膜上的有机超薄膜的表面增强红外吸收光谱以来山,对其增强机理及应用的研究一直是人们关注的热点.人们不论是从实验上还是从理论上都通过种种努力来探索表面增强红外光谱的机理,但仍然没有给出一个清晰的图象.一般  相似文献   

19.
We describe an atmospheric-pressure plasma process for the reduction of metal cation-containing polymer films to form electrically conductive patterns. Thin films of poly(acrylic) acid (PAA) containing silver ions (Ag+) were prepared by mixing the polymer with silver nitrate (AgNO3) in solution to produce a cross-linked precipitate, homogenizing, and depositing onto a substrate by doctor’s blade. Exposing the Ag–PAA films to a scanning microplasma resulted in reduction of the bulk dispersed Ag+ in a desired pattern at the film surface. The processed films were characterized by scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and current–voltage measurements. The resistances of the patterned features were found to depend on the thickness of the films, the microplasma scan rate, residual solvent in the film, and electric field created between the microplasma and the substrate. Together these results show that the formation of conductive features occurs via an electrodiffusion process where Ag+ diffuses from the film bulk to the surface to be reduced by the microplasma.  相似文献   

20.
Four films (A, B, C and D) of two-dimensional island platinum films (2D-I(Pt)Fs) whose mass thicknesses (dm) are 10, 20, 30 and 40 Å, respectively were deposited onto Corning 7059 glass substrates via the thermal evaporation technique. The increase in the film resistance with time (aging) in air is monitored until stable values are obtained. Each of the prepared films was γ-irradiated by different doses, namely, 100, 200, 300, 500 and 700 Gy; this was done using 137Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. For each dose the relative change in the film resistance was found at different values of strain either in the tensional or compressional mode. The gauge factor (v) of the Pt films was deduced and we found that; for particular dm, the gauge factor decreases as the dose increases. Also, for a particular dose, v decreases as dm increases. Qualitative interpretation for the results was offered on the ground that (i) the transfer of electrons between islands takes place by the thermally activated tunneling mechanism, (ii) the process of γ-irradiation makes the islands spread along the substrate and consequently the inter-island spacing will decrease. The micrographs taken by the Atomic Force Microscope (AFM) confirmed such spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号