首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of adenine and adenosine, the copper(II)/copper(Hg) couple splits to the copper(II)/copper(I) and copper(I)/copper(Hg) couples. Sparingly soluble complexes of copper(I) with adenine and adenosine can be accumulated on the electrode surface either by reduction of Cu(II) ions or by oxidation of the copper amalgam electrode. The copper(I)/adenine deposit can be stripped either cathodically or anodically with detection limits of 5×10?9 and 2×10?8 mol dm?3, respectively. The copper(I)/ adenosine complex yields only the cathodic stripping peak with a detection limit of 9×10?6 mol dm?3. The stripping peaks obtained for the copper(I)/adenine and copper(I)/ adenosine complexes are better defined and appear over a wider range of pH than the peaks related to the corresponding mercury compounds. Adenosine cannot be determined in the presence of adenine bur adenine can be determined in the presence of moderate amounts of adenosine.  相似文献   

2.
A hanging copper amalgam drop electrode (HCADE) is used for the determination of traces of iodide by cathodic stripping voltammetry. The cathodic stripping peak of copper(I) iodide from the HCADE is better defined than that of mercury(I) iodide from a hanging mercury drop electrode. Optimum conditions and interferences are reported. With a 3-min deposition time at ?0.1 V vs. SCE, the calibration plot is linear up to 2 × 10?6 mol dm?3 iodide. The detection limit for iodide with the HCADE under voltammetric conditions is 4 × 10?8 mol dm?3; this is lowered to 8 × 10?9 mol dm?3 by using the differential pulse stripping technique.  相似文献   

3.
The utility of a copper-based mercury film electrode (MFE) in cathodic stripping voltammetry (c.s.v.) is tested by comparing the cyclic and stripping voltammograms obtained with this electrode for thiocyanate, tryptophane, cysteine and benzotriazole against those obtained with the hanging copper-amalgam drop electrode (HCADE) and the HMDE. The cathodic stripping peaks obtained at the copper-based MFE and the HCADE are usually narrower and higher and are located at more negative potentials than the peaks obtained at the HMDE. Lower detection limits and better separations of adjacent peaks are thus achieved, and useful peaks can be separated from the mercury waves obtained with the conventional HMDE. The advantage of the copper-based MFE over the HCADE is its simplicity of preparation and maintenance. Thiocyanate, tryptophane, cysteine and benzotriazole can be determined at the copper-based MFE by c.s.v. with detection limits of 1 × 10?8, 1 × 10?8, 5 × 10?8 mol dm?3, respectively.  相似文献   

4.
A liquid ion-exchange electrode containing a complex of mercury(II) with N-(O,O-diisopropylthiophosphoryl)thiobenzamide in carbon tetrachloride is described. The electrode shows excellent sensitivity and good selectivity. The slope of the calibration graph is 29.0 mV/pHg2+ in the pHg2+ in the pHg2+ range 2–15.2 in mercury(II) ion buffers. The electrode can be used for determination of 5 × 10?5–10?2 M Hg(II) in the presence of 10?2 M Cu(II), Ni(II), Co(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(III), Cr(III), Bi(III) or Al(III) ions and in the presence of 10?3 M Ag(I) ions. It can bealso used for end-point detection in titrations with EDTA of 10?3–10?4 M mercury(II) at pH 2.  相似文献   

5.
A new modified carbon paste electrode for determination of Cu2+ made in our laboratory that used a new synthesized macrocycle 7,16-diaza-1-thia-4,10,13,19-tetraoxa-6,17-dioxo-2,3;20,21-dinaphtho-cyclouneicosane as modifier. This sensor exhibits a good affinity toward copper (II) ions over a wide variety of other metal ions. The electrode exhibits a Nernstian slope of 30 (±0.5) mV per decade for copper (II) ions over a wide concentration range (1.0 × 10?8–1.0 × 10?2 mol L?1), with a limit of detection of 7.0 × 10?9 mol L?1 (~0.45 ppb). It has a response time of 30 s and can be used for at least 3 months without any considerable divergence in responses. The potentiometric response of the electrode is independent of the pH of test solution in the pH range 3.5–7.5. Finally, it was successfully used as an indicator electrode for determination of copper (II) in real samples such as Karoun river and tap water.  相似文献   

6.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

7.
《Analytical letters》2012,45(13):2026-2040
Abstract

The potentiometric response characteristics of a new copper(II) ion-selective PVC membrane electrode based on erythromycin ethyl succinate (EES) as ionophore were investigated. The electrode exhibited a Nernstian response to Cu2+ ions over the activity range of 1.5 × 10?2 to 2.0 × 10?6 mol L?1 with a limit of detection of 6.3 × 10?7 mol L?1. Stable potentials were obtained in the pH range of 5.5–6.5. The potentiometric selectivity coefficients were calculated by using fixed interference method and revealed no important interferences except for Ag+. This electrode was successfully applied as an indicator electrode in determination of copper ions in real water samples.  相似文献   

8.
A reduction current is obtained when an aqueous solution of copper and catechol is subjected to differential-pulse cathodic stripping voltammetry (d.p.c.s.v.) because of the reduction of copper(II)—catechol complex ions which adsorb onto the hanging mercury drop electrode (HMDE). The most likely form of the adsorbed complex ions is CuL2?2 (L being catechol). A.c. polarographic measurements showed that these complex ions adsorb more strongly onto the drop than free catechol ions. Monolayer adsorption density is obtained at 2.1 × 10?10 molecules/cm2, equivalent to a surface area of 78 A2 complex ion, which agrees well with the molecular surface area calculated from the bond lengths. Analytically useful currents are obtained at very low metal concentrations, such as in uncontaminated sea water. The possible interference by other trace metals, major cations, and organic complexing ligands is investigated. Competition for copper ions by natural organic complexing ligands is evident at low concentrations of catechol. Analysis of the dissolved copper concentration in sea water by d.p.c.s.v. at the HMDE (at neutral pH) compares favourably with the d.p.a.s.v. technique at a rotating disk electrode (at low pH) because of the shorter collection period and greater sensitivity.  相似文献   

9.
A PVC membrane electrode for Hg(II) ions, based on a new cone shaped calix[4]arene (L) as a suitable ionophore was constructed. The sensor exhibits a linear dynamic in the range of 1.0 × 10?6–1.0 × 10?1 M, with a Nernstian slope of 29.4 ± 0.4 mV decade?1, and a detection limit of 4.0 × 10?7 M. The response time is quick (less than 10 s), it can be used in the pH range of 1.5–4, and the electrode response and selectivity remained almost unchanged for about 2 months. The sensor revealed comparatively good selectivity with respect to most alkali, alkaline earth, and some transition and heavy metal ions. It was successfully employed as an indicator electrode in the potentiometric titration of Hg2+ ions with potassium iodide, and the direct determination of mercury content of amalgam alloy and water samples.  相似文献   

10.
The prepared and characterized metformin ‐copper (II) complex was used as elecroactive material for modification of a new sensitive and selective modified carbon paste electrode (MCPE) for the potentiometric determination of copper (II) in water samples. The performance characteristics of MCPE were carried out. The electrode showed perfect potentiometric response for Cu (II) over concentration range of 1.0 × 10?6 – 5.0 × 10?2 mol L?1 with a detection limit of 1.0 × 10?6 mol L?1 with divalent slope value 30.8 ± 0.92 mV decade?1 over the pH range of 2–6 and exhibits fast response time of 9 s. Also, this electrode exhibited good selectivity towards Cu (II) ions with respect to other metal ions. The obtained results using the proposed electrode were in a good agreement with those obtained using the inductively coupled plasma (ICP) method.  相似文献   

11.
The effect of purine (concentration range of 1.00 × 10?6?C1.00 × 10?2 M) on the behavior of copper in a 0.5 M Na2SO4 solution (pH 7 and pH 9) was studied using the open circuit potential measurement, potentiodynamic polarization, and chronoamperometry. Potentiodynamic polarization shows that purine acts as a copper corrosion inhibitor in both alkaline and neutral sulfate solutions. The efficiency of inhibition increases as the purine concentration increases. Chronoamperometric results follow the same trend as the results of potentiodynamic polarization. The inhibition effect can also be observed visually by microscopic examination of the electrode surface. Purine is adsorbed on copper surface according to the Langmuir adsorption isotherm.  相似文献   

12.
In this work, a new diimine-dioxime compound (N,N′-bis[1-biphenyl-2-hydroxyimino-2-(4-chloroanilino)-1-ethylidene]-1,4-phenylenediamine) was synthesized and characterized by a combination of elemental analyses, FT-IR, 1H- and 13C-NMR spectra. The extraction ability of the new compound has been examined in chloroform by using several transition metal picrates such as Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II) and Hg(II). It has been observed that diimine-dioxime compound shows a high affinity to Hg(II) ion. The electrochemical measurements of the compound were performed by cyclic voltammetry in acetonitrile solution at room temperature, and two irreversible oxidation waves were observed. A Hg(II)-selective electrode based on the diimine-dioxime compound has been developed. The electrode showed linear responses with Nernstian slopes of 33 ± 1 mV per decade over a wide concentration range (1.0 × 10?2–8.0 × 10?6 M). The limit of detection was 2.4 × 10?6 M. The electrode has a response time about 10–15 s and it did not show a considerable divergence in its potential response over a period of 1 month. The proposed electrode revealed selectivity towards Hg(II) ion in the presence of various cations. The electrode could be used over a wide pH range of 4.0–9.0. The electrode can be successfully used as an indicator electrode for potentiometric titration of Hg(II) with EDTA.  相似文献   

13.
A vermiculite modified carbon paste electrode (VMCPE) was employed for the in situ preconcentration of traces of Hg(II) and Ag(I) via an ion-exchange route. Heavy metal ions were accumulated in Britton-Robinson (BR) buffer pH 7 for Hg(II) and pH 6 for Ag(I), and afterwards reduced at –0.7 V vs. Ag/AgCl in the separate measurement solution (BR buffer pH 5 + 0.05 mol/L NaNO3) prior to the anodic stripping square-wave voltammetric (ASSWV) detection. For Hg(II) ions, at 15 min accumulation, a linear range from 1.0 × 10–7 to 8.0 × 10–6 mol/L was obtained, with a 5.7 × 10–8 mol/L limit of detection. The VMCPE response was linear for Ag(I) ions in the concentration range from 2.0 × 10–7 to 8.0 × 10–6 mol/L, at 10 min accumulation with a corresponding limit of detection of 6.3 × 10–8 mol/L. The relative standard deviation of the analytical procedure including accumulation from a 5 × 10–7 mol/L solution of Hg (15 min) or Ag(I) (10 min), electrolysis, ASSWV detection, regeneration and activation of the VMCPE, was 4% (n = 6). The optimisation of the parameters for the application of the VMCPE in combination with ASSWV detection is presented and discussed.  相似文献   

14.
Electrochemical methods represent an important class of widely used techniques for the detection of metal ions. The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. This study focused on the synthesis of a nano‐Fe(III)–Sud complex and its characterization using various spectroscopic and analytical tools, optimized using the density functional theory method, screened for antibacterial activity and evaluated for possible binding to DNA using molecular docking study. Proceeding from the collected information, nano‐Fe(III)–Sud was used further for constructing carbon paste and screen‐printed ion‐selective electrodes. The proposed sensors were successfully applied for the determination of Fe(III) ions in various real and environmental water samples. Some texture analyses of the electrode surface were conducted using atomic force microscopy. At optimum values of various conditions, the proposed electrodes responded towards Fe(III) ions linearly in the range 2.5 × 10?9–1 × 10?2 and 1.0 × 10?8–1 × 10?2 M with slope of 19.73 ± 0.82 and 18.57 ± 0.32 mV decade?1 of Fe(III) ion concentration and detection limit of 2.5 × 10?9 and 1.0 × 10?8 M for Fe(III)–Sud‐SPE (electrode I) and Fe(III)–Sud‐CPE (electrode II), respectively. The electrode response is independent of pH in the range 2.0–7.0 and 2.5–7.0, with a fast response time (4 and 7 s) at 25°C for electrode I and electrode II, respectively. Moreover, the electrodes also showed high selectivity and long lifetime (more than 6 and 3 months for electrode I and electrode II, respectively). The electrodes showed good selectivity for Fe(III) ions among a wide variety of metal ions. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

15.
The Cu (II) imprinted polymer glassy carbon electrode (GCE/Cu-IP) was prepared by electropolymerization of pyrrole at GCE in the presence of methyl red as a dopant and then imprinting by Cu2+ ions. This electrode was applied for potentiometric and voltammetric detection of Cu2+ ion. The potentiometric response of the electrode was linear within the Cu2+ concentration range of 3.9 × 10?6 to 5.0 × 10?2 M with a near-Nernstian slope of 29.0 mV decade?1 and a detection limit of 5.0 × 10?7 M. The electrode was also used for preconcentration anodic stripping voltammetry and results exhibited that peak currents for the incorporated copper species were dependent on the metal ion concentration in the range of 1.0 × 10?8 to 1.0 × 10?3 M and detection limit was 6.5 × 10?9 M. Also the selectivity of the prepared electrode was investigated. The imprinted polymer electrode was used for the successful assay of copper in two standard reference material samples.  相似文献   

16.
The title subject has been studied by galvanostatic single-pulse, chronopotentiometric and equilibrium measurements on the Mn(Hg)/Mn(II) electrode (mainly saturated managanese amalgams) in one molar alkali chloride (LiCl, KCl and CsCl) and potassium iodide and thiocyanate solutions of pH 4 to 5 at 25°C. The Mn(Hg)/Mn(II) reactions are found to occur in two consecutive steps with monovalent ions as intermediate in all these solutions. The rates of both the ion-transfer step Mn(Hg)/Mn(I) and the electron-transfer step Mn(I)/Mn(II) appear independent of the cations Li+ and K+ and of the anions Cl?, I? and SCN?, when differences in bulk activities of electroactive species are corrected for. The Cs+ ion, however, seems to retard the reactions more than expected from bulk activity changes, and this can be explained by Cs+ specific adsorption or by variations in the properties of the inner layer with the cation.  相似文献   

17.
《Electroanalysis》2018,30(8):1837-1846
This study reports a highly sensitive electrochemical sensor based on Bi film modified glassy carbon electrode (BiF/GCE) for total determination and speciation trace concentrations of copper(II) ions in environmental water samples. Square wave‐adsorptive anodic stripping voltammetric (SW‐ASV) experiment was performed for monitoring selective accumulation of copper(II) with reagent 3‐[(2‐mercapto‐vinyl)‐hydrazono]‐1,3‐dihydro‐indol‐2‐one (MHDI) at pH 9–10. The mechanism of the electrode reaction of Cu2+‐MHDI complex was safely assigned. The sensor exhibited a wide linear range (3.22×10−9–2.0×10−7 mol L−1) with lower limits of detection (LOD) and quantitation (LOQ) of 9.6×1−10 and 3.22×10−9 mol L−1, respectively (R2=0.9993). The proposed sensor exhibited interference from active metal ions e. g. Cd, Hg. The performance of the proposed method was compared successfully with most of the reported methods and comparable efficiencies were obtained. The analytical utility of the proposed SW‐ASV method has been successfully validated for trace analysis of copper(II) in environmental water samples. The method offers a precise, accurate approach with good reproducibility, robustness, ruggedness, and cost effectiveness.  相似文献   

18.
《Analytical letters》2012,45(15):2743-2753
Abstract

The electrochemical behavior of 6-MP was studied by cyclic voltammetry at a hanging copper amalgam dropping electrode (HCADE). It was found that 6-MP could form a complex with the Cu(II) stripped from the HCADE, showing a new peak at ?0.19V in the medium of 0.1mol/L LiClO4-0.5mol/L HClO4 solution. The mechanism of the reaction was proposed. This new peak was sensitive and could be used for the determination of trace 6-MP by differential pulse adsorption cathodic stripping voltammetry (DPAdCSV). The linear range was from 3.6×10?10 to 5.3×10?6 mol/L, and the detection limit was about 1.2×10?10 mol/L (S/N=3). The method was also successfully applied to the determination of 6-MP in pharmaceutical tablets.  相似文献   

19.
A PVC membrane electrode for copper(II) ion based on a recently synthesized Schiff base as a suitable ion carrier was constructed. The electrode exhibits a Nernstian slope of 28.3 ± 0.6 mV per decade of Cu2+ over a wide concentration range of 7.0 × 10?6‐2.6 × 10?2 M with a detection limit of 5.0 × 10?6M in the pH range of 4.2–5.8. The response time is about 10s and it can be used for at least 1 month without any considerable divergence in potential. It was successfully applied as an indicator electrode in the potentiometric titration of copper ions.  相似文献   

20.
The modified carbon paste electrode (CPE) responding simultaneously to lead(II), copper(II), and mercury(II) ions has been constructed by incorporating humic acid (HA) into the graphite powder with Nujol oil. Simple immerging of the electrode into the measuring solution containing these metal ions led to the chemical deposition of the ions onto the electrode through the complexation of the ions with HA. Cyclic and differential pulse voltammetry (DPV) characterized the modified electrode's surfaces. Several cyclings of the potential regenerated the electrode (from more positive than the stripping potential of reduced Hg to more negative than the reduction of Pb(II)ion), which was then used for another deposition. After five deposition/measurement/regeneration cycles, the peak current of voltammograns of the analyte decreased slightly. The response reproduced with a 5.1% relative standard deviation. We also applied ihe differential pulse technique to the previously mentioned system. Here, the detection limit tor Pb(II), Cu(II), and Hg(II) ions were 5.0 × 10−9 M 8.0 × 10−9 M, and 8.0 × 10−9 M, respectively, for 20 minutes of deposition time. After pretreatment of silver(I) ion with KC1, we could not observe any interference by other metal ions on the determination of the test ions in aqueous solution. Satisfactory results were acquired for the determination of the test metal ions in certified standard urine reference material SRM's 2670 (trace elements in urine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号