首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions convenient for the determination of traces of seIenium(IV) by cathodic stripping technique are described. Several electrolytes were tested. Three procedures are given in which the troublesome splitting of the stripping peak is eliminated. Suitable conditions include perchloric acid solution at elevated temperature, hydrochloric acid solution after preconcentration at zero current, and perchloric acid solution containing a small amount of iodide. The detection limits are 5 × 10-9, 2 × 10-9 and 5 × 10-10 mol dm-3, respectively. The time required for the entire procedure is about 30 min starting with a soluble seIenium(IV) sample.  相似文献   

2.
Arsenic (III), respectively arsenic(V) after the reduction were determined in model solutions and some inorganic and organic materials by fast scan differential pulse cathodic stripping voltammetry and by direct current cathodic stripping voltammetry with a rapid increase of potential. The accumulation on a hanging mercury drop electrode followed by cathodic stripping was carried out in 0.7–0.8M HCl or 1–2M H2SO4 solutions containing Cu(II)-ions. Detection limits calculated from regression parameters was determined to be under 1 ng/ml for the samples containing very low arsenic concentrations. The relative standard deviation did not reach 8% for arsenic contents about of 5 ng/ml.  相似文献   

3.
A hanging copper amalgam drop electrode (HCADE) is used for the determination of traces of iodide by cathodic stripping voltammetry. The cathodic stripping peak of copper(I) iodide from the HCADE is better defined than that of mercury(I) iodide from a hanging mercury drop electrode. Optimum conditions and interferences are reported. With a 3-min deposition time at ?0.1 V vs. SCE, the calibration plot is linear up to 2 × 10?6 mol dm?3 iodide. The detection limit for iodide with the HCADE under voltammetric conditions is 4 × 10?8 mol dm?3; this is lowered to 8 × 10?9 mol dm?3 by using the differential pulse stripping technique.  相似文献   

4.
Ertas FN  Fogg AG  Moreira JC  Barek J 《Talanta》1993,40(10):1481-1488
The behaviour of the copper complexes of glycyl-L-histidyl-glycine (GHG) was investigated using cyclic voltammetry and differential pulse voltammetry after their adsorptive accumulation on the surface of a hanging mercury drop electrode (HMDE). The nature of the observed cathodic and anodic peaks was established and optimum conditions were found for the differential pulse cathodic stripping voltammetric detemination of GHG at the 1 x 10(-8)M concentration level using adsorptive accumulation at -0.20 V vs. Ag/AgCl reference electrode and the cathodic stripping peak around -0.4 V (pH 8.3). This peak corresponds to the reduction of the Cu(I)-GHG complex formed at the HMDE surface as an intermediate in the reduction of Cu(II)-GHG to Cu(O)amalgam.  相似文献   

5.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

6.
The behaviour of selenium(IV) in cathodic stripping voltammetry is evaluated systematically. The effects of copper concentration, pH, deposition potential and complexing agents on the stripping peak are examined and criteria are given for the choice of suitable quantitative parameters. The detection limit was found to be 20 ng l?1 and the background contamination level was 35 ng l?1. Zinc and lead do not affect the determination of selenium if EDTA is added to the solution whereas cadmium interferes badly; the corresponding mechanisms are discussed.  相似文献   

7.
Controlled adsorptive accumulation at the hanging mercury drop electrode enables 0.8–11 × 10?5 M chlordiazepoxide to be quantified by differential-pulse stripping voltammetry with accumulation times of 1–3 min. With 3-min accumulation, the peak current is enhanced 12-fold for 1.0 × 10?7 M chlordiazepoxide compared to the current from differential pulse polarography. The detection limit is 0.9 × 10?9 M for 4-min accumulation. The procedure is applied to spiked human serum after preseparation of the drug on a Sep-Pak C18 cartridge.  相似文献   

8.
The Ge(IV)—Ge(0) system was investigated by cyclic and stripping voltammetry at HMDE in acidic pyrogallol medium and in phosphate, borate and carbonate buffers. It was found that germanium electrodeposited from dilute Ge(IV) solutions dissolved anodically forming two peaks corresponding to the oxidation of the unstable homogeneous and stable heterogeneous amalgams. Both peaks can be exploited analytically for the determination of traces of germanium but due to the complex nature of the germanium amalgam the sensitivity and reproducibility of the determinations are lower compared to the results obtained for metals well-soluble in mercury.  相似文献   

9.
Robert Piech 《Talanta》2007,72(2):762-767
Hanging copper amalgam drop electrode has been applied for trace determination of arsenic by cathodic stripping analysis. Detection limit for As(III) as low as 0.33 nM (0.02 μg/L) at deposition time (240 s) could be obtained. For seven successive determinations of As(III) at concentration of 5 nM relative standard deviation was 2.5% (n = 7). Interferences from selected metals and surfactant substances were examined. Absence of copper ions in sample solution causes easier optimization and makes method less vulnerable on contamination. The developed method was validated by analysis of certified reference materials (CRMs) and applied to arsenic determinations in natural water samples.  相似文献   

10.
Banica FG  Fogg AG  Moreira JC 《Talanta》1995,42(2):227-234
Oxidized glutathione (GSSG) can be determined after previous accumulation on the HMDE at E > -0.2 V (vs. the Ag AgCl reference electrode). GSH is formed during the accumulation, possibly by a mercury-ion-assisted hydrolytic disproportionation of GSSG. In the subsequent cathodic scan GSH is released and catalyses the reduction of nickel ion, giving a peak located at -0.6 V. This enables the determination of GSSG by differential-pulse cathodic stripping voltammetry at pH 7.0 in the phosphate acetate or MOPS buffer containing 0.5-1.0 mM Ni(II). The detection limit is 10 nM. The calibration graph is linear even in the presence of small amounts of human serum albumin, HSA. However, HSA increases the detection limit (20 nM for 3 x 10(-4)% HSA). Acetyl-cysteine in small excess or Cu(II) present as reagent impurity do not interfere. Glutathione, cysteine and similar compounds, which accumulate as mercury salts and form stable nickel complexes, will interfere. The method is put forward as a novel alternative stripping voltammetric method to those involving accumulation and determination as mercury or copper salts and complexes, in the knowledge that it may have advantages in particular analytical situations. In particular the method discriminates against compounds which accumulate as mercury salts but which do not form stable nickel complexes.  相似文献   

11.
Controlled adsorptive accumulation of 2-thioorotic acid (6-carboxy-2-thiouracil) on the hanging mercury drop electrode provides the basis for the direct stripping measurement of that compound in the nanomolar concentration level. Differential pulse voltammetry, following 3 min preconcentration, yields a detection limit of 5.0×10-10 M 2-thioorotic acid. The cathodic stripping response is evaluated with respect to experimental parameters such as preconcentration time and potential, bulk concentration and others. Best results are obtained using a 0.001 M NaOH electrolyte.Two different methods of cathodic stripping voltammetry can be proposed for the determination of 2-thioorotic acid and the reproducibility of these methods is studied.  相似文献   

12.
An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.  相似文献   

13.
A simple, fast and quantitative method was developed for the determination of As(III) and total inorganic arsenic (As (total)) in natural spring and mineral waters using square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). In the determination of As(III), pre-concentration was carried out on the electrode from a solution of 1 mol/l HCl in the presence of 45 ppm of Cu(II) at a potential of −0.39 V versus Ag/AgCl, and the deposited intermetallic compound was reduced at a potential of about −0.82 V versus Ag/AgCl. In the determination of As (total) the pre-concentration was carried out in 1 mol/l HCl in the presence of 400 ppm of Cu(II) at a potential of −0.40 V versus Ag/AgCl, and the intermetallic compound deposited was reduced at a potential of about −0.76 V versus Ag/AgCl. For determination of As(III) the quantification limit was 0.2 ppb for a deposition time of 40 s, and the relative standard deviation (R.S.D.) was calculated to be 6% (n=13) for a solution with 8 ppb of As(III). For As (total), the quantification limit was 2 ppb for a deposition time of 3 min, and the R.S.D. was calculated to be 3% (n=10) for a solution with 8 ppb of As(V). The method was validated by application of recovery and duplicate tests in the measurements of As(III) and As (total) in natural spring and mineral waters. For As (total), the results of the SWCSV method were compared with the results obtained by optical emission spectrometry with ICP coupled to hydride generation (OES-ICP-HG) good correlation being observed.  相似文献   

14.
Adsorptive stripping voltammetry was used for the determination of trace amounts of the dye Tartrazine (E-102) by square-wave (SWS) and differential pulse techniques (DPS). Its adsorptive voltammetric behaviour was investigated at different pH media. NH4Cl/NH3 buffer solution was chosen as the most suitable, taking into account the sensitivity and definition of the reduction peaks obtained. The effects of the experimental parameters on the determination are discussed. Standard deviations of 3.3% and 2.6% were obtained by SWS and DPS for 100 and 50 μg/L Tartrazine solutions, respectively (n = 10). Both methods were applied to determine the dye in several commercial soft drinks, containing very small amounts of it. Measurements were made directly in the commercial samples. A comparison of the results obtained by the proposed voltammetric methods with those of an HPLC method was also made. Good correlations between the voltammetric results and the values supplied by the manufacturer were found, whereas recoveries of the same order of magnitude were obtained by the HPLC method. Received: 23 May 1996 / Revised: 5 July 1996 / Accepted: 10 July 1996  相似文献   

15.
Pseudouridine (5-ribosyluracil), uridine (N,1-ribosyluracil), deoxyuridine (N,1-deoxyribosyluracil) and uracil are investigated by means of d.c. polarography and by differential and normal pulse polarography. Pseudouridine, which is known to be a cancer marker, yields anodic polarographic currents in the pH range 7–11, whereas uridine and deoxyuridine are inactive under the same conditions. The polarographic response of pseudouridine obtained is due to the formation of a sparingly soluble mercury compound. Pseudouridine can be determined by differential pulse polarography in the concentration range 2–6 × 10?6 M and by differential-pulse cathodic stripping voltammetry at concentrations two orders of magnitude lower. Small excesses of uridine, deoxyuridine or proteins do not interfere with the determination.  相似文献   

16.
17.
Lutetium has been determined by differential pulse anodic stripping voltammetry in an acidic solution containing Zn-EDTA. Lutetium (III) ions liberated zinc (II), which was preconcentrated on a hanging mercury drop electrode and stripped anodically, resulting in peak current linearly dependent on lutetium (III) concentration. Less than 0.4 ng mL−1 lutetium could be detected after a 2 min deposition.   相似文献   

18.
Folic acid can be determined at nanomolar concentrations by controlled adsorptive accumulation of folic acid on a static mercury drop electrode held at ?0.3 V vs. Ag/AgCl followed by reduction of the surface species. In 0.1 M sulfuric acid, a cathodic scan gives peaks at ?0.47 v and ?0.75 V vs. Ag/Agcl; the latter peak provides greater sensitivity. Differential-pulse stripping is shown to be superior to normal-pulse and d.c. stripping. After a 5-min preconcentration, the detection limit is about 1 × 10?10 M folic acid. The adsorptive stripping response is evaluated with respect to concentration dependence, preconcentration time and potential, solution acidity and the presence of gelatin and bromide. The relative standard deviation at the 5 × 10?8 M level is 1.2%. This method is applied to the determination of folic acid in pharmaceutical tablets.  相似文献   

19.
Summary Procedures are described for the determination of bismuth impurities in. copper using anodic stripping voltammetry on a hanging mercury drop electrode. Bismuth was previously separated from copper by cation or anion exchange in hydrochloric acid. The method was applied to the analysis of commercially available high purity copper, showing satisfactory sensitivity and accuracy. The detection limit was about 2×10–9 M bismuth in solution for a pre-electrolysis time of 15 min (–0.5 V vs. Ag/AgCl); this corresponds to 0.004 ppm of bismuth for a 1 g sample and a final volume of 10 ml after separation.
Bestimmung von Wismutspuren in Kupfer durch anodische Amalgamvoltammetrie
Zusammenfassung Mit hängendem Quecksilbertropfen. Wismut wird vor der Bestimmung durch Kationen oder Anionenaustausch aus salzsaurer Lösung vom Kupfer abgetrennt. Das Verfahren wurde zur Analyse von handelsüblichem hochreinem Kupfer angewendet. Mit einer Vorelektrolysedauer von 15 min (–0,5 V gegen Ag/AgCl) konnten noch 2×10–9 M Bi bestimmt werden; das entspricht 0,004 ppm Bi für eine 1 g-Probe bei einem Endvolumen von 10 ml nach der Trennung.
  相似文献   

20.
The electrochemical characteristics of azinphos-ethyl (APE) have been determined by means of electrochemical techniques such as cyclic voltammetry (CV) and adsorptive stripping voltammetry (ASV) at a hanging mercury drop electrode (HMDE) over a wide range of pH from 2.0 to 8.0. The cyclic voltammograms demonstrate the adsorption of this compound at the mercury electrode. A systematic study of the various operational parameters that affect the stripping response was carried out by differential pulse voltammetry (DPV). With a preconcentration potential of −0.6 V and a 60 s preconcentration time, the limit of detection was 5.42 × 10−9 M, and the relative standard deviation (n = 5) was 2.7 % at concentration level of 6.45 × 10−7 M APE. The degree of interference from diverse ions and some other pesticides on the differential pulse stripping signal for APE was evaluated. Finally, the method was applied to the determination of APM in spiked soil, tap water, and treated wastewater. The text was submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号