首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Silver-doped silica was prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS, Si(OC2H5)4) in the presence of a silver nitrate (AgNO3) solution by two different synthesis methods. In the first synthesis route, sol-gel mixtures were prepared using an acid catalyst. In the second synthesis route, silver-doped silica gels were formed by two-step acid/base catalysis. For the same concentration of silver dopant [AgNO3]/[TEOS] = 0.015 acid-catalyzed sol-gel formed a microporous silica with an average pore size of <25 Å whereas the two-step catalyzed silica had an average pore size of 250 Å and exhibited a mesoporous structure when fully dried. The differences in the pore size affected the silver particle formation mechanism and post-calcination silver particle size. After calcination at 800 °C for 2 h the acid-catalyzed silica contained metallic silver particles size with an average particle size of 24 ± 2 nm whereas two-step catalyzed silica with the same concentration of [AgNO3]/[TEOS] = 0.015 contained silver nanoparticles with an average size of approximately 32 ± 2 nm. Mechanisms for silver particle formation and for silica matrix crystallization with respect to the processing route and calcination temperature are discussed.  相似文献   

2.
The annealing behaviour of silica powders added with silver, prepared by the sol-gel method, was studied using X-ray diffraction. Partial crystallization of amorphous SiO2 samples as low as 600°C has been observed. For that, silver needed to be added to the precursor solution in such a way that it formed aggregates. Silica xerogel samples were prepared using a molar ratio ethanol/H2O/TEOS of 4:11.6:1 and loaded with silver in three different ways: in the form of silver nitrate, silver chloride, or chemically synthesised silver fine particles. The microstructure of the silica xerogel powders was studied as a function of annealing temperature. Attention was paid to the evolution of the glass matrix as well as the silver aggregates in the SiO2 matrix. Partial crystallization of the glass matrix was achieved at temperatures much lower than those specified by the phase diagram, independently of preparation method of the silver aggregates.  相似文献   

3.
We report the fabrication of nano silver coated patterned silica thin film by sol–gel based soft lithography technique. Initially, silica gel film on soda lime silica glass was prepared by dipping technique from a silica sol of moderate silica concentration. A PolydimethylSiloxane elastomeric stamp containing the negative replica of the patterns of commercially available compact disc was used for embossing the film and the embossed film was cured up to 450 °C in pure oxygen atmosphere for oxide film. Finally, a precursor solution of AgNO3 in water containing polyvinyl alcohol as an organic binder was made and used for coating on the patterned silica film by dipping technique and cured the sample up to 450 °C in reducing gas atmosphere to obtain nano silver layer. The formation of only cubic silver (~4.0 nm) and both cubic silver (~5.2 nm) and silver oxide (~3.6 nm) crystallites at 350 and 450 °C film curing temperatures respectively were confirmed by XRD measurements. The % of nano silver metal and silver oxide were 75.4 and 24.6 respectively. The nano-structured surface feature was visualized by FESEM whereas AFM revealed the high fidelity grating structure of the films. Presence of both spherical and rectangular structure (aspect ratio, 2.37) of nano silver/silver oxide was confirmed by TEM. The films were also characterized by UV–Vis spectral study. The patterned film may find application in chemical sensor devices.  相似文献   

4.
CuO/SiO2 and NiO/SiO2 with bimodal pore structure were prepared by sol-gel reactions of Tetra-methoxysilane (TMOS) and the respective metal nitrate in the presence of poly (ethylene oxide) (PEO) with an average molecular weight of 10 000 and the catalyst of acetic acid. In this process, the interconnected macroporous morphology was formed when transitional structures of spinodal decomposition were frozen by the sol-gel transition of silica. The addition of copper and nickel into the silica-PEO system had a negligible effect on the morphology formation. In gel formation, it was found that NiO crystalline sizes in the samples increased with decreasing Si/Ni molar ratio. It was considered that PEO interacted with both silica and nickel cations. In the CuO/SiO2 with the presence of PEO, CuO crystalline sizes were larger than those of NiO/SiO2. It was considered that there was no obvious interaction between the Cu cation and PEO, most of the copper ions in wet silica gel were present in the outer solution. They easily aggregated as copper salts in the drying process of wet gel and decomposed into CuO particles in heating. While in the CuO/SiO2 with the absence of PEO, the Cu was selectively entrapped as small particles in the gel skeleton due to the interaction between Cu aqua complex and silica gel network.  相似文献   

5.
Via electroless metal deposition, well-defined silver dendrites and thin porous silicon (por-Si) layers are simultaneously prepared in ammonia fluoride solution containing AgNO3 at 50 °C. A self-assembled localized microscopic electrochemical cell model and a diffusion-limited aggregation mode are used to explain the growth of silver dendrites. The formation of silver dendritic nanostructures derives from the continuous aggregation growth of small particles on a layer of silver nanoparticles or nanoclusters (Volmer-Weber layer). Thin and homogeneous nanostructure por-Si layers display visible light-emission properties at room temperature. The investigation of the surface-enhanced Raman scattering (SERS) reveals that the film of silver dendrites on por-Si is an excellent substrate with significant enhancement effect.  相似文献   

6.
The darkening of silica sol-gel glasses doped with 0.05 mol% silver was studied. Six sols were prepared from TEOS and silver nitrate. Different additives were used, to influence the chemical and physical states of silver: oxidizing or reducing agents (H2O2, As2O5), colloid stabilizer (sodium citrate) and network modifiers (Li2O, CaO). Sols were gelified at 60°C and densified at 600°C. The samples without additives and those prepared with H2O2 at room temperature even if they were protected from light. With increased temperature, the darkening became samples were heated above, 400°C, reversible bleaching took place. This darkening-bleaching is of thermal nature (“thermochromic effect”) and seems to be determined by a reversible aggregation-disaggregation of tiny silver particles. The presence of sodium citrate, as an additive delayed the darkening effect and the presence of CaO delayed it even further. Lithium oxide inhibited it totally.  相似文献   

7.
《Comptes Rendus Chimie》2014,17(7-8):775-784
Four types of SBA-15 were prepared with different times and temperatures of treatment in order to obtain a range of micropore sizes. CO oxidation was used as a probe reaction in order to evaluate the nature of the active species when SBA-15s were doped with ca 10% Ag deposited from an AgNO3 solution and calcined or reduced at 350 °C. The texture (TEM, nitrogen physisorption), structure (XRD) and reducibility (TPR) of the various catalysts (Ag/SBA-15) were studied and compared to those of a catalyst prepared by deposition of silver on fumed silica as a reference. These catalysts differ initially by the nature of silica and by pore sizes. In CO oxidation, pre-reduced catalysts are more active than pre-oxidised ones. This has to do with two phenomena, i.e. sintering, which produces large inactive silver particles, and formation of active silver species in the form of small Ag2O particles.  相似文献   

8.
The fractal characterization of silica particles prepared by the sol-gel method was obtained; from the beginning of the sol-gel synthesis to the aggregation process of these particles by adding metal ions in solution, the fractal dimension was determined. At the beginning of the sol-gel process, unstable structures were formed due, essentially, to the auto-catalytic nature of the sol-gel condensation reactions; these particles are fractal structures with a fractal exponent corresponding to a reaction limited aggregation regime. As the time proceeds, the reactants are consumed approaching the system to equilibrium, stabilizing the size of the silica particles. The silica sol can be flocculated by adding metal ions in solution. The fractal exponent for the aggregation process was determined, obtaining a value corresponding to a diffusion limited aggregation regime.  相似文献   

9.
Two sets of silver doped silica samples were prepared, one using the traditional sol-gel method and the other from colloidal silica. In samples prepared by the first method, the addition of Ag promotes crystallization of the SiO2 matrix when annealed at temperatures below those marked by the phase diagram. Before crystallization of the silica glass into the -cristobalite phase occurs, the silver diffuses throughout the amorphous network to form silver colloidal particles at annealing temperatures that depend on the silver concentration. In samples obtained from the colloidal silica, larger Ag particles are formed at lower annealing temperatures. Further annealing at higher temperatures crystallizes the glass into the already mentioned phase. The reason of having larger Ag particles at lower temperatures in the latter set of samples is probably because they have a more open structure, produced by a wider distribution in the Si—O—Si bridging angle.  相似文献   

10.
Two sol-gel fabrication processes were investigated to make silica spheres containing Ag nanoparticles: (1) a modified Stöber method for silica spheres below 1 m size, and (2) a SiO2-film formation method on spheres of 3–;7 m size. The spheres were designed to incorporate silver nanoparticles of high (3) in a spherical optical cavity structure for the resonance effect. For the incorporation, interaction between [Ag(NH3)2]+ ion and Si-OH was important. In the Stöber method, the size of the silica spheres was determined by a charge balance of plus and minus ions on the silica surface. In the film formation method, the capture of Ag complex ion on the silica surface depended on whether the surface was covered with OH groups or not. After doping [Ag(NH3)2]+ into silica particles or SiO2 films on the spheres, these ions w ere reduced by NaBH4 to form silver nanoparticles. From plasma absorption at around 420 nm wavelength and TEM photographs of nanometer-sized silver particles, their formation inside the spherical cavity structures was confirmed.  相似文献   

11.
Non-Stoichiometric CoFe2O4 nanoparticles dispersed in an silica matrix with a silica content of 87 wt% and Co/Fe molar ratio of 1:1, were prepared by the sol-gel method using an ethanolic solution of tetraethoxysilane and either iron(III) and cobalt(II) nitrates or iron(II) and cobalt(II) acetates. The influence of different metal precursors on the xerogels were examined by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and N2 physisorption measurements at 77 K. Magnetic properties of the samples were investigated by field cooled FC and zero field cooled ZFC measurements.Depending on the metal precursor, different spinel oxides of a few nanometers were observed in the samples treated at 350°C. After heating at 900°C non-stoichiometric CoFe2O4 was formed in both samples, whose average particle size was only slightly larger than in samples treated at 350°C.  相似文献   

12.
Ag/SiO2 and Ag3PO4/SiO2 systems supported on silica aerogel were investigated using temperature-programmed reduction (TPR), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and infrared spectroscopy. The formation of highly dispersed silver particles, uniformly distributed along the surface and stabilized with silanol groups, was observed for Ag/SiO2 system. Phosphate and silanol groups produce two states of silver localization in phosphate-containing system. The addition of phosphate onto the silica surface leads to the reversible oxidation/reduction of silver in the temperature range of 100–300°C with transitions of silver (particles 10–30 nm in size) to charged states (ions, clusters stabilized by phosphate groups). This reversible behavior of silver is stable, and the amount of silver involved in these processes remained constant (∼50%) for the series of consistent cyclic oxidation/reduction treatments.  相似文献   

13.
Silica-silver core-shell composite particles with uniform thin silver layers were successfully synthesized by a facile and one-step ultrasonic electrodeposition method. By electrolysis of the slurry consisting of preformed silica spheres and silver perchlorate without any additives, the homogenous composite particles can be prepared. The average size of single silver crystals in the composite is about 12 nm and the thickness of silver layer is 14±2 nm. Moreover, the continuity of Ag distribution, the surface roughness and the thickness of silver layer are controllable by adjusting the current density (I), the concentration of electrolyte (C) and the reaction time (t). Optical properties of the composite particles with different silver content were also investigated.  相似文献   

14.
Hematite template route to hollow-type silica spheres   总被引:1,自引:0,他引:1  
Hollow-type silica spheres with controlled cavity size were prepared from Fe2O3-SiO2 core-shell composite particles by selective leaching of the iron oxide core materials using acidic solution. The spherical Fe2O3 core particles with a diameter range of 20-400 nm were first prepared by the hydrolysis reaction of iron salts. Next, the Fe2O3-SiO2 core-shell particles were prepared by the deposition of a SiO2 layer onto the surface of Fe2O3 particles using a two-step coating process, consisting of a primary coating with sodium silicate solution and a subsequent coating by controlled hydrolysis of tetraethoxysilicate (TEOS). The Fe2O3 core was then removed by dissolving with acidic solution, giving rise to hollow-type silica particles. Scanning electron microscopy clearly revealed that the cavity size was closely related to the initial size of the core Fe2O3 particle. According to the cross-sectional view obtained by transmission electron microscopy, the silica shell thickness was about 10 nm. The porous texture of the hollow-type silica particles was further characterized by nitrogen adsorption-desorption isotherm measurements.  相似文献   

15.
The catalysts of silver supported on mesoporous silica modified with Co3O4, CeO2, and ZrO2 were prepared by an impregnation method; characterized by X-ray diffraction analysis, temperature-programmed reduction, and low-temperature nitrogen adsorption; and studied in a model reaction of CO oxidation. It was found that the Ag/SiO2 system exhibited high activity in the reaction of CO oxidation, and the addition of transition metal oxides led to reduction of the temperature of 50% CO conversion by 40°C. The modification of Ag/SiO2 with cerium dioxide was found most effective because of the interaction of silver particles and CeO2 on the surface of silica gel.  相似文献   

16.
The study deals with an aqueous phase application of mixed matrix membranes (MMMs) for silver ion (Ag+) capture. Silica particles were functionalized with 3-mercaptopropyltrimethoxy silane (MPTMS) to introduce free thiol (–SH) groups on the surface. The particles were used as the dispersed phase in the polysulfone or cellulose acetate polymer matrix. The membranes were prepared by the phase inversion method to create more open and interconnected porous structures suitable for liquid phase applications. The effects of the silica properties such as particle size, specific surface area, and porous/nonporous morphology on the silver ion capture capacity were studied. It was demonstrated that the membranes are capable of selectively capturing silver from a solution containing significant concentrations of other metal ions like Ca2+. The membranes were studied to quantify the dynamic capacity for silver ion capture and its dependence on residence time through the adjustment of transmembrane pressure. The thiol–Ag+ interaction was quantified with quartz crystal microbalance in a continuous flow mode experiment and the observations were compared with the membrane results. One-dimensional unsteady state model with overall volumetric mass transfer coefficient was developed and solved to predict the silver concentration in the liquid phase and the solid silica phase along the membrane thickness at varying time. The breakthrough data predicted using the model is comparable with the experimental observations. The study demonstrates successful application of the functionalized silica–mixed matrix membranes for selective aqueous phase Ag+ capture with high capacity at low transmembrane pressures. The technique can be easily extended to other applications by altering the functionalized groups on the silica particles.  相似文献   

17.
Polymer modifications of ultrafine monodispersed colloidal metal oxide particles, smaller than 80 nm in diameter, by the graft-polymerization of styrene to a hydrophilic macromer adsorbed on the surface were investigated. The polymerization in ethanolic silica and titania colloid solution, which had negatively larger ζ-potentials, ?30 and ?42 mV in neutral aqueous solution respectively, gave poly(styrene)–silica or titania composite, being of nonspherical shape. The modifications of colloidal particles, having lower surface energy, such as Al(OH)3 and CeO2–TiO2–SiO2 complex, led to the formation of spherical composites, ranging in size from 500 to 3000 nm, of scattered metal oxide or hydroxide particles.  相似文献   

18.
Non-agglomerated hybrid particles of 200 nm diameter with an outer metal oxide shell were prepared by reacting the COOH groups of poly((S)-N-dicarbazolyl-lysine)-covered silica particles with metal alkoxides, such as titanium, zirconium and aluminum alkoxides, followed by sol–gel processing. With tetraethoxysilane (Si(OEt)4), the silica particle core was growing rather than forming an external metal oxide shell, as observed for the other tested metal alkoxides.  相似文献   

19.
Catalytic properties of silver nanoparticles supported on silica spheres   总被引:3,自引:0,他引:3  
In this work, we investigate the catalytic properties of silver nanoparticles supported on silica spheres. The technique to support silver particles on silica spheres effectively avoids flocculation of nanosized colloidal metal particles during a catalytic process in the solution, which allows one to carry out the successful catalytic reduction of dyes. The effects of electrolytes and surfactants on the catalytic properties of silver particles on silica have been investigated. It is found that the presence of surfactants depresses the catalytic activity of the silver particles to some extent by inhibiting the adsorption of reactants onto the surface of the particles. Electrolytes either increase the migration rate of reactants in the solution resulting in an increase in the catalytic reaction rate or inhibit the adsorption of reactants onto the surface of the silver particles leading to a loss in the activity of the metal particles.  相似文献   

20.
Anti-Reflective Coatings for CRTs by Sol-Gel Process   总被引:3,自引:0,他引:3  
Two types of anti-reflective coatings composed of nano-particles were developed for cathode ray tubes (CRTs). The anti-reflective and anti-static coating is composed of two layers. An outer SiO2 layer is formed over a porous inner layer composed of titanium oxynitride (TiO x Ny), antimony-doped tin oxide (ATO) and SiO2. To control the reflection of the film, a porous structure is formed using a mixed sol composed of TiO x N y -ATO particles and hydrolyzed-polymerized tetraethoxy-silane (TEOS). The resulting double layered coating is shown to consist in a nanocomposite pseudo three-layer structure. The antireflective electromagnetic-wave-shielding coating is also composed of two layers. An outer SiO2 layer is formed over an electric-conductive inner layer composed of silver colloids, TiO x N y nano particles. Silver colloids are used to obtain a film having low surface resistivity and TiO x N y nano-particles contained in the inner layer enhance the durability of the film. To reduce the plasma-resonance absorption caused by silver colloids, silver ions are added to the outer layer solution. The silver ions diffuse into the inner layer from the outer layer when the film is cured, touch to the surface of silver colloids, suppress the silver colloid growth and reduce the specific absorption of the film. These coatings are successfully applied to the panel glass for CRTs on an industrial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号