首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Two new coumarin biosides, tert-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranosyl-byakangelicin (1) and 2′-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyl-peucedanol (2), were isolated from the fresh roots of Angelica dahurica. The structures of the new compounds were elucidated on the basis of spectral analysis. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 561–563, November–December, 2008.  相似文献   

2.
Thirteen known glycosides of hederagenin and oleanolic acid and the three new triterpene glycosides of oleanolic acid-28-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester 3-O-β-D-glucopyranosyl-(1→4)-O-β-D-xylopyranosyl-(1→ 3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside of oleanolic acid and the 28-O-α-L-rhamnopyranosyl-(1→4)-O-6-O-acetyl-β-D-glucopyranosyl-(1→ 6)-O-β-D-glucopyranosyl esters 3-O-β-D-xylopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside of oleanolic acid and 3-O-β-D-glucopyranosyl-(1→4)-O-β-Dxylopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→ 2)-O-α-L-arabinopyranoside of oleanolic acid were isolated from leaves of Kalopanax septemlobum var. typicum introduced to Crimea. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 40–43, January–February, 2006.  相似文献   

3.
The structures of seven triterpene glycosides (1–7), of which the 23-O-acetyl, 28-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosyl ester of hederagenin 3-O-β-D-glucopyranosyl-(1→3)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranoside (2) was new, from the flower buds of Lonicera macranthoides were established using chemical and NMR spectroscopic methods. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 32–34, January–February, 2008.  相似文献   

4.
Formononetin and the new isoflavonoid glycosides formononetin-7-O-β-D-galactopyranoside and inermin-3-O-β-D-galactopyranoside were isolated from Trifolium pratense L. roots. The structures of the isolated compounds were proved using chemical transformations and UV, PMR, and 13C NMR spectra. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 21–23, January–February, 2008.  相似文献   

5.
Sixteen triterpene glycosides, three of which were new, hederagenin 28-O-β-D-glucuronopyranosyl ester and 28-O-β-D-gentiobiosyl ester and oleanolic acid 3-O-α-L-arabinopyranoside, were isolated from stem bark of Kalopanax septemlobum. The glycoside contents in stem bark of two varieties, maximowiczii and typicum, were compared. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 49–53, January–February, 2006.  相似文献   

6.
The new cycloartane glycoside cyclogaleginoside D, which has the structure 25-O-β-D-glucopyranoside-20S, 25R-epoxycycloartan-3β, 6α, 16β, 25-tetraol 3-O-β-D-(2-O-acetyl)xylopyranoside was isolated from Astragalus galagiformis stems. The structure of the glycoside was established using chemical transformations and IR, PMR, and 13C NMR spectral data. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 255–256, May–June, 2006.  相似文献   

7.
A method for preparative production of 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1), a glycoside from Panax japonicus, chikusetsusaponin-LT8 was developed. Chemical transformation of betulafolientriol, a component of Betula leaves extract, produced the 12-keto-20S-protopanaxadiol (3β,20S-dihydroxydammar-24-en-12-one) (2), exhaustive glycosylation of which by 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosylbromide (3) under Koenigs—Knorr reaction conditions with subsequent removal of protecting groups formed 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1). The principal glycosylation product was 3β,20S-dihydroxydammar-24-en-12-one 3-O-β-D-glucopyranoside if equimolar amounts of (2) and (3) were used. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 44–48, January–February, 2006.  相似文献   

8.
A novel steroidal saponin, along with 12 known steroidal compounds, was isolated from the rhizomes of Paris polyphylla var. chinensis. Spectral data, including two-dimensional NMR, showed that the structure of the novel saponin was 3β,21-dihydroxypregnane-5-en-20S-(22,16)-lactone-1-O-α-L-rhamnopyranosyl(1→2)-[β-D-xylopyranosyl(1→3)]-β-D-glucopyranoside. The isolated steroidal compounds were evaluated for their cytotoxic activity on human gastric cancer cell line HepG2, SGC7901, BxPC3. Diosgenin-3-O-α-L-rhamnopyranosyl(1→2)[α-L-rabinofuranosyl(1→4)]-β-D-glucopyranoside exhibited the most potent cytotoxic activity among the isolated steroids. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 556–560, November–December, 2007.  相似文献   

9.
Formononetin, prunetin, genistein, genistin, and a new genistein glycoside genistein-7-O-β-D-galactopyranoside were isolated from the aerial part of Trifolium pratense L. The structures of the isolated compounds were established based on chemical transformations and UV, 1H, and 13C NMR spectra. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 141–143, March–April, 2008.  相似文献   

10.
Two new thiazinediones along with five known compounds were isolated from the fruits of Xanthium strumarium L. The structures of the two new compounds were determined to be 7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside (1) and 2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside (2). The five known compounds were identified as xanthiazone (3), chlorogenic acid (4), ferulic acid (5), formononetin (6), and ononin (7), respectively. Published in Khimiya Prirodnykh Soedinenii, No. 5, pp. 456–458, September–October, 2006.  相似文献   

11.
The new natural compound lavandoside with the structure ferulic acid 4-O-β-D-glucopyranoside was isolated by column chromatography over silica gel and polyamide from the extract of Lavandula spica flowers. The chemical structure of lavandoside was established using UV, NMR, and mass spectra and chemical transformations. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 133–134, March–April, 2008.  相似文献   

12.
Twelve cardiac glycosides and aglycons were isolated from Strophanthus kombe seeds. Of these, eight were identified as cymarin, K-strophanthin-β, K-strophanthoside, periplocymarin, 17α-strophadogenin, erysimin (= helveticoside), erysimoside, and neoglucoerysimoside. Four glycosides, preliminarily designated Sk-x, Sk-y, Sk-z, and Sk-20, were new. Their chemical structures were established as 3β-O-β-D-glucopyranosyl-5β,14β,16β-trihydroxy-19-oxo-17α-card-20(22)enolide (17α-strophadogenin-3-O-β-D-glucoside), 3β-O-β-D-cymaropyranosyl-5β,14β,16β-trihydroxy-19-oxo-17α-card-20(22)enolide (17α-strophadogenin-3-O-β-D-cymaroside), 3β-O-β-D-cymaropyranosyl-4′-O-β-D-glucopyranosyl-6″-O-β-D-glucopyranosyl-5β, 14β,16β-trihydroxy-19-oxo-17α-card-20(22)enolide (17α-strophadogenin-3-O-strophanthotrioside), and 3-O-β-D-digitoxopyranosyl-4′-O-β-D-glucopyranosyl-6″-O-β-D-glucopyranosyl-5β,14β, 19-trihydroxy-card-20(22)enolide (strophanthidol-3-O-gentiobiosyldigitoxoside), respectively. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 156–159, March–April, 2006.  相似文献   

13.
The structure of a new compound was determined using PMR and 13C NMR spectroscopy (HHCOSY, HSBC, HMBC, ROESY) as 2-[3′-methoxy,4-O-β-D-galactopyranos-1-yl)benzyl]-3-(3″,4″-dimethoxybenzyl)-4hydroxybutyric acid, which was isolated for the first time from seeds of Scotch thistle Onopordum acanthium L. *For No. XII, see [1]. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 53–55, January–February, 2009.  相似文献   

14.
A new stilbene glycoside, 5-methylresveratrol-3,4′-O-β-D-diglucopyranoside (1), was isolated from the n-butanol fraction of the rhizomes of Veratrum dahuricum, together with five known stilbenoids: resveratrol-3-O-β-D-glycoside (2), 4′-methylresveratrol-3-O-β-D-glycoside (3), oxyresveratrol-4′-O-β-D-glycoside (4), oxyresveratrol-3-O-β-D-glycoside (5), and oxyresveratrol-3,4′-O-β-D-diglycoside (6), and found for the first time in the investigated plant. The structures of six isolates were identified on the basis of 1D and 2D NMR data. Compounds 1–6 showed platelet aggregation inhibition, and compound 1 had an IC50 value of 383.6 μM against platelet aggregation induced by AA. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 279–282, May–June, 2009.  相似文献   

15.
Luteolin, quercetin, cinaroside, quercimeritrin, and the new flavonol bioside gigantoside A were isolated from Cephalaria gigantea (Ledeb.) Bobr. (Dipsacaceae) flowers. Spectral properties and chemical transformations established that gigantoside A had the structure quercetin-7-O-[α-L-arabinopyranosyl(1→6)]-β-D-glucopyranoside. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 552–554, November–December, 2006.  相似文献   

16.
A new compound, β-sitosterylglucoside-3′-O-linoleate, named balanoinvolin, and three known compounds coniferin, methylconiferin, and 4-O-β-D-glucopyranosylconiferyl aldehyde, were isolated from Balanophora involucrate Hook. f. and their structures were determined by MS and 1D/2D NMR spectra. Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 315–317, May–June, 2009.  相似文献   

17.
Two new benzoyl esters of glucose 1-O-(E)-4′-methoxybenzoyl-β-D-glucopyranose (1) and 1-O-(E)-4′-methoxybenzoyl-β-D-gluconic acid (2) were isolated from Lagotis yunnanensis, together with six previously known iridoid glucosides. The structures of these compounds were elucidated on the basis of spectral analysis, including 2D NMR spectroscopy. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 529–530, November–December, 2006.  相似文献   

18.
A preparative semi-synthetic method was developed to prepare 20S-protopanaxadiol 20-O-β-Dglucopyranoside (1), a metabolite of Panax ginseng glycosides. The 20-O-•-D-glucopyranosides of 20S-hydroxydammar-24-en-3,12-dione, 3β,20S-dihydroxydammar-24-en-12-one, and 3β,12α, 20S-trihydroxydammar-24-ene were synthesized for the first time. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 364–369, July–August, 2006.  相似文献   

19.
Some characteristic features of reactions ofN-(β-hydroxyalkyl)-N′-hydroxydiazeneN-oxide salts with various α- and β-functionalized alkyl halides were established. Some α-and β-functionalizedN-(β-hydroxyalkyl)-N′-alkoxydiazeneN-oxides and e ethylenebis[N-(β-hydroxyalkyl)-N′-oxydiazeneN-oxides] were synthesized for the first time. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 123–129, January, 1999.  相似文献   

20.
From the overground parts of Verbascum dudleyanum, six iridoid glycosides, aucubin, ajugol, catalpol, 6-O-α-L-rhamnopyranosylcatalpol, saccatoside, and 6-O-(3″-O-trans-p-coumaroyl)-α-L-rhamnopyranosylcatalpol, and two saponins, ilwensisaponin A and C, as well as a flavonoid, luteolin-7-O-β-glucopyranoside, together with an acetophenone glucoside, picein, were isolated. The structures of isolated compounds were elucidated by spectroscopic methods. These compounds showed biological acitivites. __________ Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 232–234, May–June, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号