首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The effect of trans thiolate ligation on the coordinated nitric oxide in ferric heme nitrosyl complexes as a function of the thiolate donor strength, induced by variation of NH-S(thiolate) hydrogen bonds, is explored. Density functional theory (DFT) calculations (BP86/TZVP) are used to define the electronic structures of corresponding six-coordinate ferric [Fe(P)(SR)(NO)] complexes. In contrast to N-donor-coordinated ferric heme nitrosyls, an additional Fe-N(O) sigma interaction that is mediated by the dz2/dxz orbital of Fe and a sigma*-type orbital of NO is observed in the corresponding complexes with S-donor ligands. Experimentally, this is reflected by lower nu(N-O) and nu(Fe-N) stretching frequencies and a bent Fe-N-O moiety in the thiolate-bound case.  相似文献   

2.
8-oxo-deoxyguanosine (8-oxo-dG) is a major oxidative lesion in DNA and is responsible for mutation and cancer. Current techniques for detecting 8-oxo-dG are indirect methods. Thus, development of new methodologies is needed to directly detect such oxidative lesions. In this article, we have used ultraviolet resonance Raman (UVRR) spectroscopy as a novel analytical technique for the detection of 8-oxo-dG. Here, the UVRR spectrum of 8-oxo-dG was acquired and compared to that of deoxyguanosine (dG) and deoxyadenosine (dA). Data analysis shows a distinct UVRR spectrum of 8-oxo-dG with characteristic peaks. Detection of 8-oxo-dG was easily achieved from a mixture with dG. These results reveal that UVRR spectroscopy shows promise as a direct method for detecting 8-oxo-dG.  相似文献   

3.
UV resonance Raman studies of peptide and protein secondary structure demonstrate an extraordinary sensitivity of the amide III (Am III) vibration and the C(alpha)H bending vibration to the amide backbone conformation. We demonstrate that this sensitivity results from a Ramachandran dihedral psi angle dependent coupling of the amide N-H motion to (C)C(alpha)H motion, which results in a psi dependent mixing of the Am III and the (C)C(alpha)H bending motions. The vibrations are intimately mixed at psi approximately 120 degrees, which is associated with both the beta-sheet conformation and random coil conformations. In contrast, these motions are essentially unmixed for the alpha-helix conformation where psi approximately -60 degrees. Theoretical calculations demonstrate a sinusoidal dependence of this mixing on the psi angle and a linear dependence on the distance separating the N-H and (C)C(alpha)H hydrogens. Our results explain the Am III frequency dependence on conformation as well as the resonance Raman enhancement mechanism for the (C)C(alpha)H bending UV Raman band. These results may in the future help us extract amide psi angles from measured UV resonance Raman spectra.  相似文献   

4.
5.
6.
Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.  相似文献   

7.
13CN ion appears to have the greatest potential to probe the heme environment of the ferric heme proteins; however, a resonance of the iron-bound (13)CN ion in ferric heme proteins has not yet been located. We show here the first detection of (13)C NMR signals of the iron-bound (13)CN for heme proteins and their model complexes in an unexpectedly large upfield region. This study demonstrates that the (13)C NMR signal of the iron-bound (13)CN is a sensitive probe to study the nature of the proximal ligand in ferric heme protein.  相似文献   

8.
9.
Chemiluminescence detection was combined with capillary isoelectric focusing to perform protein analysis with high sensitivity. Luminol-H2O2 chemiluminescence was utilized, and heme proteins such as cytochrome c, myoglobin and peroxidase were analyzed. The proteins were focused by use of Pharmalyte 3-10 as ampholytes. Hydroxypropylmethyl-cellulose was added to the sample solution in order to easily reduce protein interactions with the capillary wall as well as the electroendoosmotic flow. The focused proteins were transported by salt mobilization to chemiluminescence detection cell equipped with an optical fiber. The present method showed significantly high sensitivity and wide dynamic range; the detection limit for cytochrome c was 6 x 10(-9) M and the linear dynamic range was greater than two-orders of magnitude (up to 2 x 10(-6) M).  相似文献   

10.
The resonance Raman (RR) spectra of nitrophorin 1 (NP1) from the saliva of the blood-sucking insect Rhodnius prolixus, in the absence and presence of nitric oxide (NO) and in the presence of cyanide (CN(-)), have been studied. The NP1 displayed RR spectra characteristic of six-coordinate high-spin (6cHS) ferric heme at room temperature and six-coordinate low-spin heme (6cLS) at low temperature (77 K). NO and CN(-) each bind to Fe(III), both ligands forming 6cLS complexes with NP1. The Fe(III)-NO stretching and bending vibrational frequencies of nitrosyl NP1 were identified at 591 and 578 cm(-1), respectively, on the basis of 15NO isotope shifts. These frequencies are typical of Fe-NO ferric heme proteins, indicating that the NP1 nitrosyl adduct has typical bond strength. Thus, the small NO release rate displayed by NP1 must be due to other protein interactions. Room and cryogenic temperature (77 K) RR spectroscopy and 13C, 15N, and 13C15N isotope substitutions have been used to determine vibrational mode frequencies associated with the Fe(III)-CN(-) bond for the cyano adducts at 454, 443, 397, and 357 cm(-1). The results were analyzed by normal mode calculations to support the assignment of the modes and to assess the NO and CN(-) binding geometries. The observed isotope shifts for the cyano NP1 are smaller than expected and reveal vibrational coupling of Fe(III)-CN(-) modes with heme modes. We also find that the observed frequencies are consistent with the presence of a nearly linear Fe(III)CN(-) linkage (173 degrees ) coexisting with a population with a bent structure (155 degrees ).  相似文献   

11.
12.
Evidence is presented demonstrating that the magnitudes of the 13C chemical shifts originating from heme meso carbons provide a straightforward diagnostic tool to elucidate the coordination state of high-spin heme proteins and enzymes. Pentacoordinate high-spin heme centers exhibit 13C meso shifts centered at approximately 250 ppm, whereas their hexacoordinate counterparts exhibit 13C shifts centered at approximately -80 ppm. The relatively small spectral window (400 to -100 ppm) covering the meso-13C shifts, the relatively narrow lines of these resonances, and the availability of biosynthetic methods to prepare 13C-labeled heme (Rivera, M.; Walker, F. A. Anal. Biochem. 1995, 230, 295-302) make this approach practical. The theoretical basis for the distinct chemical shifts observed for meso carbons from hexacoordinate high-spin hemes relative to their pentacoordinate counterparts are now well understood (Cheng, R.-J.; Chen, P. Y.; Lovell, T.; Liu, T.; Noodleman, L.; Case, D. A. J. Am. Chem. Soc. 2003, 125, 6774-6783), which indicates that the magnitude of the meso-carbon chemical shifts can be used as a simple and reliable diagnostic tool for determining the coordination state of the heme active sites, independent of the nature of the proximal ligand. Proof of the principle for the 13C NMR spectroscopic approach is demonstrated using hexa- and pentacoordinate myoglobin. Subsequently, 13C NMR spectroscopy has been used to unambiguously determine that a recently discovered heme protein from Shigella dysenteriae (ShuT) is pentacoordinate.  相似文献   

13.
Resonance Raman spectra are computed applying the weighted gradient methodology with CIS and DFT gradients to determine the characteristic spectral patterns for Hg(II) and Pb(II) loaded sulfur-rich proteins while excited to a characteristic LMCT electronic transition band. A framework of structure-spectrum relationships is established to assess lead coordination modes via vibrational spectroscopy. Illustrative calculations on Hg(II) complexes agree with experimental data demonstrating reliability and accuracy of the applied methodology. In contrast to Hg(II) complexes, a unique 3-center-4-electron hypervalent C(β)H···S interaction present in lead-sulfur complexes was established and suggested to play a key role in the strong preference for lead versus other metal ions in lead specific proteins such as PbrR691. The characteristic Pb-S symmetric stretching bands, predicted without additional refinements such as scaling of a force field or frequencies, are found around 238 cm(-1) for 3-coordinated lead-sulfur domains and around 228 cm(-1) for 4-coordinated lead-sulfur domains. These results present an experimental challenge for clear detection of lead coordination via solely UVRR spectroscopy. In addition to predicted UVRR spectra, UVRR excitation profiles for relevant vibrational bands of lead-sulfur domains are presented.  相似文献   

14.
Huang X  Ren J 《Electrophoresis》2005,26(19):3595-3601
In this paper we present a sensitive chemiluminescence (CL) detection of heme proteins coupled with microchip IEF. The detection principle was based on the catalytic effects of the heme proteins on the CL reaction of luminol-H2O2 enhanced by para-iodophenol. The glass microchip and poly(dimethylsiloxane) (PDMS)/glass microchip for IEF were fabricated using micromachining technology in the laboratory. The modes of CL detection were investigated and two microchips (glass, PDMS/glass) were compared. Certain proteins, such as cytochrome c, myoglobin, and horseradish peroxidase, were focused by use of Pharmalyte pH 3-10 as ampholytes. Hydroxypropylmethylcellulose was added to the sample solution in order to easily reduce protein interactions with the channel wall as well as the EOF. The focused proteins were transported by salt mobilization to the CL detection window. Cytochrome c, myoglobin, and horseradish peroxidase were well separated within 10 min on a glass chip and the detection limits (S/N=3) were 1.2x10(-7), 1.6x10(-7), and 1.0x10(-10) M, respectively.  相似文献   

15.
Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.  相似文献   

16.
Treatment of the complexes [Re(NO)2(PR3)2][BAr(F)4] (R = Cy, 1 a; R = iPr, 1 b) with phenyldiazomethane gave the cationic benzylidene species [Re{CH(C6H5)}(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) in good yields. Upon reaction of 2 a and 2 b with acetonitrile, the consecutive formation of [Re(N[triple bond]CCH3)(N[triple bond]CPh)(NO)(OC(CH3)=NH)(PR3)][BAr(F)4] (3 a and 3 b) and [Re(NCCH3)(OC{CH3}NH{C6H5})(NO)(PR3)2][BAr(F)4] (4 a and 4 b) was observed. The proposed reaction sequence involves the coupling of coordinated NO, carbene and acetonitrile molecules to yield the (1Z)-N-[imino(phenyl)methyl]ethanimidate ligand. The coupling of the nitrosyl and the benzylidene is anticipated to occur first, forming an oximate species. The subsequent acetonitrile addition can be envisaged as a heteroene reaction of the oximate and the acetonitrile ligand yielding 3 a and 3 b, which in turn can cyclise and undergo a prototropic shift initiated by an internal attack of the ethaneimidate ligand on the benzonitrile moiety to afford 4 a and 4 b.  相似文献   

17.
Three new pyrazine-bridged dimers of oxoacetatotriruthenium with an NO ligand are synthesized. These complexes show two types of stable mixed-valence states. The ν(NO) stretches for five oxidation states were obtained, and the intramolecular electron-transfer rate within the mixed-valence state is evaluated from the IR spectral line-shape simulation based on Bloch-type analysis, which is the first application of this method to a spectator ligand of NO.  相似文献   

18.
We have used femtosecond IR spectroscopy to probe interconversion dynamics of ligand in the primary docking site of heme proteins under physiological conditions. The docking site, fashioned with highly conserved amino acid residues, modulates ligand-binding activity by mediating the passage of ligand to and from the active binding site. Ligands in two states of the docking site interconvert on the picosecond time scale, and the rates are about 4 times slower in hemoglobin than that in myoglobin. The accurate interconversion rates on the time scale readily accessible by MD simulations can be used to refine computer simulations, which could in turn provide a detailed mechanistic picture of ligand binding in heme proteins.  相似文献   

19.
20.
Interconversion dynamics of the ligand in the primary docking site of myoglobin (Mb) and hemoglobin (Hb) in trehalose and glycerol/D2O mixtures at 283 K was investigated by probing time-resolved vibrational spectra of CO photolyzed from these proteins. The interconversion dynamics in viscous media are similar to those in aqueous solution, indicating that it is minimally coupled to the solvent-coupled large-scale protein motion. Interconversion rates in the heme pocket of Hb in water solution are slower than those of Mb in trehalose glass, suggesting that the interconversion barrier in Hb is intrinsically higher than that in Mb and is not modified by the solvent viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号