首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emulsion-coated transparent plastic-base film has been the main carrier for production and preservation of motion picture contents since the 19th century. The knowledge of the composition of black and white silver gelatine cinematographic films is of great importance for the characterization of the photographic process and for identifying the optimum conditions for conservation. A cinematographic film is a multi-component system that consists of a layer of photographic emulsion overcoating a polymeric support (plasticized cellulose triacetate) and a protective transparent cross-linked gelatine layer coating the emulsion. In the present work, Laser Induced Breakdown Spectroscopy (LIBS) is used to characterize the composition of the materials of cinematographic films. LIB spectra of film samples and of different individual film components, polymeric support and reference gelatines, were acquired in vacuum by excitation at 266 nm (Q-switched Nd:YAG laser, 6 ns, 10 Hz). In the cinematographic film, silver lines from the light-sensitive silver halide salts of the photographic emulsion are accompanied by iron, lead, chrome and phosphorus lines. Iron and lead are constituents of film developers, chrome is included in the composition of the hardening agents and phosphorus has its origin in the plasticizer used in the polymeric support. By applying successive pulses on the same spot of the film sample, it was possible to observe through stratigraphic analysis the different layers composition. Additionally, the results obtained reveal the analytical capacity of LIBS for the study and classification of the different gelatine types and qualities used for the protecting layer and the photographic emulsion.  相似文献   

2.
As a result of continuing instrumental development (Echelle spectrometer and ICCD detectors), micro-Laser Induced Breakdown Spectroscopy analysis may become an increasingly recognized analytical technique for determining elemental compositions of geologic materials. Best conditions of time resolution conditions (delay and time acquisition window) are estimated with respect to the collection geometry of optical plasma emission of our system. It turns out that the level of the Bremsstrahlung continuum emission is weak in the first tens of nanoseconds after the laser excitation pulse. The enlargement of the emission lines is identified in the first 100 ns but remains comparable to the spectral resolution of our system. Thus, results show that time-resolved conditions are not necessarily required to perform elemental analysis at the micrometric scale using LIBS, contrary to macro-LIBS. This suggests potential improvements of micro-LIBS analysis (sensitivity and spectral resolution) using non-intensified CCD connected with the laser pulse.  相似文献   

3.
Catalyst deactivation is an unavoidable process that occurs in catalytic chemical reactions. Laser Induced Breakdown Spectroscopy (LIBS) is used here as a novel approach to investigate the activity of palladium supported with carbon catalyst (Pd/C) over the hydrogenation of cinnamic acid with tetralin. Their outputs for four catalyst samples are reported for different time intervals of 0, 5, 10, 15 min during the reaction. The results of LIBS analysis are compared to Inductively Coupled Plasma Mass Spectrometry (ICP-MS), which shows a good agreement. Experimental data specify that line intensities of palladium (Pd) are decreased significantly with an increment of the reaction time. Moreover, the Field Emission Scanning Electron Microscope with energy dispersive spectroscopy (FESEM-EDS) of catalysts samples show aggregation of palladium particles for some places in the catalyst surface. The changes of Pd content and sintering of Pd particles in the catalyst during the reaction play substantial roles in catalyst deactivation.  相似文献   

4.
This paper is part of a more general study aimed to the determination of the best experimental procedures for reliable quantitative measurements of Fe–Mn alloys by LIBS. In this work, attention is pointed on the self-absorption processes, whose effect deeply influences the LIBS measurements, reflecting in non-linear calibration curves. The effect of self-absorption on the line intensity can be quantified by defining a self-absorption coefficient, that measures the deviation of the line intensity from the linear extrapolation of the curve of growth in the optically thin regime. The authors demonstrated in a previous paper that self-absorption coefficients could be calculated once the electron density of the plasma is known and the Stark coefficients of the lines are available. However, when the Stark coefficients of the lines of interest are not known, a different approach is needed. In this work a new method for evaluation of self-absorption coefficients in LIBS measurements is presented, which does not require the knowledge of Stark coefficients. In order to understand the basic principles and setting out the theoretical tools that will be used for the analysis of the alloys, a preliminary study was done on pure Mn; LIBS spectra were acquired in different experimental conditions, at different laser energies and different delays after the laser irradiation of the sample. Moreover, collinear double pulse measurements were also performed. Analytical relations were derived and experimental procedures devised for evaluation of the self-absorption coefficients of several Mn lines, which are important for characterization and control of the experimental conditions in which the analysis is performed.  相似文献   

5.
A review of recent results on stand-off Laser-Induced Breakdown Spectroscopy (LIBS) analysis and applications is presented. Stand-off LIBS was suggested for elemental analysis of materials located in environments where any physical access was not possible but optical access could be envisaged. This review only refers to the use of the open-path LIBS configuration in which the laser beam and the returning plasma light are transmitted through the atmosphere. It does not present the results obtained with a transportation of the laser pulses to the target through an optical fiber. Open-path stand-off LIBS has mainly been used with nanosecond laser pulses for solid sample analysis at distances of tens of meters. Liquid samples have also been analyzed at distances of a few meters. The distances achievable depend on many parameters including the laser characteristics (pulse energy and power, beam divergence, spatial profile) and the optical system used to focus the pulses at a distance. A large variety of laser focusing systems have been employed for stand-off analysis comprising refracting or reflecting telescope. Efficient collection of the plasma light is also needed to obtain analytically useful signals. For stand-off LIBS analysis, a lens or a mirror is required to increase the solid angle over which the plasma light can be collected. The light collection device can be either at an angle from the laser beam path or collinear with the optical axis of the system used to focus the laser pulses on the target surface. These different configurations have been used depending on the application such as rapid sorting of metal samples, identification of material in nuclear industry, process control and monitoring in metallurgical industry, applications in future planetary missions, detection of environmental contamination or cleaning of objects of cultural heritage. Recent stand-off analyses of metal samples have been reported using femtosecond laser pulses to extend LIBS capabilities to very long distances. The high-power densities achievable with these laser pulses can also induce self-guided filaments in the atmosphere which produce LIBS excitation of a sample. The first results obtained with remote filament-induced breakdown spectroscopy predict sample analysis at kilometer ranges.  相似文献   

6.
Laser-Induced Breakdown Spectroscopy (LIBS) experiments are performed on standard metallic samples, in air at atmospheric pressure, using a Nd:YAG laser at 1064 nm and a fiber located close to the plasma to collect its emission. This configuration is chosen because it is representative of many LIBS setups. The influence of several experimental parameters is studied in order to optimize the analytical performances: signal-to-background ratio (SBR), line intensity and repeatability. Temporal parameters of the detector are adjusted for each measurement to maximize the SBR. The signal is found to linearly depend on the pulse energy over our range of investigation. This behavior is related to the increase of the number of vaporized atoms when the pulse energy increases. Complementary measurements of plasma dimensions support our conclusions. We show the existence of an optimum fluence on the sample that gives the highest signal and the lowest relative standard deviation (RSD), and which does not depend on the pulse energy. Finally we demonstrate that ablation is much more efficient using a laser beam with a high numerical aperture, other experimental parameters being unchanged, because of a less pronounced laser shielding by the plasma. Analytical consequences of this result are discussed.  相似文献   

7.
The effect of the matrix composition on the emission enhancement observed in Double-Pulse (DP) Laser-Induced Breakdown Spectroscopy (LIBS) was studied for several pure metal targets (Al, Au, Co, Cu, Fe, Mn, Mo, Ni, Pb, Pt, Si and W). The measurements were performed in air by using a dual-pulse Nd:YAG ns laser emitting 60mJ pulses at 1064nm wavelength. The measurement of the emission enhancement for neutral and ionic lines of all the samples showed a wide range of results. Very low enhancement was observed in Pb, Ni and Mn while the highest values of enhancement were obtained in Cu, Al and Au. The space-averaged thermodynamic parameters of the induced plasmas in DP and in SP LIBS were calculated and the enhancement of ablated atomized mass in DP case was spectroscopically estimated in all the targets. A correlation seems to exist between the ablated atomized mass enhancement and the plasma temperature increase in the DP configuration. An attempt was made to correlate the increase of these two quantities with the melting point and heat, boiling point and heat, reflectivity and ionization energy of the metal. No evident correlation was found. At the opposite, a correlation was observed between the ablated atomized mass enhancement and the thermal diffusivity of the metal.  相似文献   

8.
Laser-Induced Breakdown Spectroscopy (LIBS) has been successfully applied for multi-elemental analysis of solidified mineral melt samples containing several oxides present in various concentrations. The plasma was generated using a Nd:YAG laser and the spectra were acquired using an Echelle spectrometer, coupled to an ICCD detector, which covers a spectral range from 200 to 780 nm. Using a set of 19 calibration samples, we first established univariate calibration curves for the major elements (Al, Fe, Mg, Ca, Ti and Si). We found out that the presence of matrix effects makes such a model, traditionally used in LIBS, not satisfying for quantitative analysis of such samples. Indeed, no sufficiently linear trends can be extracted from the calibration curves for the elements of interest considering all the samples. Instead, a much more robust calibration approach was obtained by considering a multivariate model. The matrix effects are then taken into account by correcting the spectroscopic signals emitted by a given species due the presence of the others ones. More specifically, we established here a calibration model using a 2nd order polynomial linear multivariate inverse regression. The capability of this approach was then checked using a 2nd set of samples with an unknown composition. A good agreement was observed between the analysis provided by X-ray fluorescence (XRF) and the LIBS measurements coupled to the multivariate model for the unknown samples.  相似文献   

9.
Laser Induced Breakdown Spectroscopy (LIBS) is an advanced analytical technique for elemental determination based on direct measurement of optical emission of excited species on a laser induced plasma. In the realm of elemental analysis, LIBS has great potential to accomplish direct analysis independently of physical sample state (solid, liquid or gas). Presently, LIBS has been easily employed for qualitative analysis, nevertheless, in order to perform quantitative analysis, some effort is still required since calibration represents a difficult issue. Artificial neural network (ANN) is a machine learning paradigm inspired on biological nervous systems. Recently, ANNs have been used in many applications and its classification and prediction capabilities are especially useful for spectral analysis. In this paper an ANN was used as calibration strategy for LIBS, aiming Cu determination in soil samples. Spectra of 59 samples from a heterogenic set of reference soil samples and their respective Cu concentration were used for calibration and validation. Simple linear regression (SLR) and wrapper approach were the two strategies employed to select a set of wavelengths for ANN learning. Cross validation was applied, following ANN training, for verification of prediction accuracy. The ANN showed good efficiency for Cu predictions although the features of portable instrumentation employed. The proposed method presented a limit of detection (LOD) of 2.3 mg dm− 3 of Cu and a mean squared error (MSE) of 0.5 for the predictions.  相似文献   

10.
Laser-induced Breakdown Spectroscopy (LIBS) in combination with Principal Components Regression (PCR) has been applied to determine the elemental composition of a series of run-of-mine (ROM) iron ore samples. The samples were presented for measurement both as compressed pellets and as loose chipped material. The present paper details the results of the measurements of the compressed pellets. Results from ore chips will be reported separately. LIBS spectral data was recorded in three separate spectral regions to measure major, minor and trace components of the iron ore sample pellets. Background stripping, normalization and spectral cleaning were applied to minimize the relative standard deviations of the LIBS data. PCR analysis was then applied to produce calibration models for iron, aluminum, silicon, manganese, potassium and phosphorous. These calibration models were then validated using independent LIBS measurements. Robust calibration models were determined for iron, aluminum, silicon and potassium, whilst the results for manganese were encouraging. Phosphorous, present at low levels in the ores measured, remained the most difficult element to determine accurately. The combination of LIBS and PCR shows potential for in-situ on-line determination of ore composition.  相似文献   

11.
激光诱导击穿光谱(Laser induced breakdown spectroscopy, LIBS)原始光谱中包含较多噪声信号, 为探究不同滤波方法对LIBS光谱预处理的影响, 本研究以实验室Pb污染处理的蔬菜为研究对象, 采集波长范围在400.45~410.98 nm的LIBS谱线信息, 分别利用相邻平均(Adjacent averaging)、Savitzky-Golay(S-G)滤波器、快速傅里叶变换(Fast Fourier transformation, FFT)对采集的LIBS光谱进行平滑、去噪, 并结合偏最小二乘法(PLS)定量分析模型对光谱处理效果进行评价.结果表明, S-G平滑效果最优, 当S-G滤波器窗口宽度为15, 拟合阶次为3时, PLS定量模型效果最佳, 其验证集均方根误差(RMSEP)为0.26、平均相对误差(ARE)为3.7%.结果表明, 选择适合的滤波方法有助于提高LIBS光谱质量以及检测模型的精度.  相似文献   

12.
激光诱导击穿光谱检测青菜中镉元素的多变量筛选研究   总被引:1,自引:0,他引:1  
利用激光诱导击穿光谱(LIBS)技术与常规化学分析方法获取28个浓度梯度含Cd元素的青菜样品的LIBS谱线信息以及Cd含量信息.对获取的光谱信息结合标准归一化处理(SNV)、一阶导数(FD)、二阶导数(SD)、中心化处理(Center)作为偏最小二乘法(PLS)模型的优选方法;再根据4种预处理方法的预测结果选取最佳方法,同时将该方法作为间隔偏最小二乘法(iPLS)与联合区间间隔偏最小二乘法(SiPLS)优选青菜LIBS谱线的最佳波长区间.结果表明:通过SiPLS优选的特征波长区间分别为214.72 ~ 215.82 nm,215.88~ 216.97 nm,225.08 ~ 226.35 nm,并且经过中心化预处理后建立的验证模型效果最好,结果显示交叉验证均方根误差(RMSECV)为1.487,验证均方根误差(RMSEP)为1.094,相关系数(R)为0.9942,平均相对误差(ARE)为11.60%.研究结果表明,所选优化方法适合青菜中重金属Cd元素的LIBS校正模型的建立,且具有较好的预测效果.  相似文献   

13.
《Analytical letters》2012,45(2):360-370
The distribution of pollution indices of copper, iron, lead, and nickel in the soil around a gas fired power plant were determined by laser induced breakdown spectroscopy. A Q-switched Nd:YAG laser operating at 90 mJ and 1064 nm was employed to convert the soil into a plasma that was characterized by optical emission spectroscopy. High concentrations of copper, iron, lead, and nickel were measured near the power station. The enrichment factors for lead, copper, nickel, and iron were 0.38–0.64, 0.2–0.65, 0.49–0.73, and 1.02–1.46 with means of 0.48, 0.37, 0.60, and 1.16. Geo-accumulation was observed to be in class 0 (unpolluted) for all metals except for iron, which was in class 0–1. The ecological risk factor was in the low potential range for all metal concentrations. From the center to the outskirts of power station and from surface to deep soil, the soil quality varied from low polluted to unpolluted for heavy metals due to power plant emission, fuel storage, and station remnants.  相似文献   

14.
The possibility to define a two-way relationship between age and a spectral property of ancient flax textiles has been investigated in the present paper employing both FT-IR and Raman analyses on selected samples dated from about 3250 B.C. to 2000 A.D.After a first selection to eliminate polluted samples, based on visual inspection, on proper mechanical tests and on a first glance at the resulting spectra, eleven samples of the original 14 have been used for Raman analysis and eight for FT-IR analysis.For the first time, the possibility to define a correlation among spectral properties and age of flax samples, by using calibration curves, has been proved.In agreement with the kinetics theoretical model, the experimental relationships are of an exponential type, giving correlation coefficients higher than 0.9. The better results were obtained using FT-IR because Raman analysis needs to consider an additional variable due to the non negligible influence of fluorescence.Presently, the method allows to assign an uncertainty of centuries to the measured data, but future calibrations based on a greater number of samples (though it is not easy to find ancient samples adequate for the test) and coupled with ad hoc cleaning procedures could significantly improve its accuracy.  相似文献   

15.
Laser Induced Breakdown Spectroscopy (LIBS) is presented as a tool for the elemental analysis of glass in forensic applications. Two harmonics of the Nd:YAG laser at 266 nm and 532 nm were used as the irradiation source for the analysis of several glass standards and soda–lime glass samples of interest to forensic scientists. Both lasers were kept at a constant energy of 20 mJ and focused using a 150 mm focal length lens. A series of experiments were also conducted to determine the importance of wavelength on lens-to-sample distance (LTSD) at each wavelength. It was determined that the optimal LTSD was found at ~ 1–2 mm focused into the surface for both wavelengths yet the crater depth resulting from the irradiation at 266 nm was significantly deeper (112 µm) than that from the 532 nm laser (41 µm). In addition, the analytical performance of LIBS on 5 NIST glasses and 6 automobile glasses at both wavelengths is reported. Good correlation for the quantitative analysis results for the trace and minor elements Sr, Ba and Al are reported along with the calibration curves, in most cases R2 > 0.95, using absolute intensities at various emission lines. Although 266 nm resulted in more mass removal, the 532 nm produced greater emission intensities. A slightly higher plasma density was determined for irradiation by 532 nm using the Stark broadening technique in comparison to the 266 nm irradiation.  相似文献   

16.
Presently, online coal ash content monitoring is performed by PGNAA (Prompt Gamma Neutron Activation Analyses) machines. Laser Detect Systems has developed an online mineral analysis system using Laser Induced Breakdown Spectroscopy (LIBS). The main advantages of the system are that it is without a radioactive source, compact (1.5 m × 0.8 m × 1.3 m), comparatively light (250 kg) and easy to install. The main disadvantage is that a LIBS system analyzes surface chemistry of the mineral exclusively and not the volume. To prove the LIBS machine analytical ability for coal ash content evaluation, a trial was arranged at Optimum Colliery (South Africa). The LIBS machine was installed in line with a PGNAA machine and laboratory data served as a referee in the final assessment for analytical accuracy. The trial was carried out over a four month period. This paper presents the successful trial results achieved for accurate (at least +/− 0.5% mean absolute error) online coal ash content monitoring.  相似文献   

17.
High resolution laser induced fluorescence, spectra of IrN in the spectral region between 394 and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. Two Ω=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.  相似文献   

18.
Dual-pulse LIBS has been previously investigated to a large extent on solid and liquid phase analytes, where it has been demonstrated to significantly enhance atomic emission signal intensity, and more importantly, to enhance the analyte peak-to-base and signal-to-noise ratios. This study focuses on the effects of an orthogonal dual-pulse laser configuration on the atomic emission response for both purely gaseous and calcium-based aerosol samples. The gaseous sample consisted of purified (i.e. aerosol free) air, from which nitrogen and oxygen spectral emission lines were analyzed. Measurements for the gaseous system resulted in no notable improvements with the dual-pulse configuration as compared to the single-pulse LIBS. Experiments were also conducted in purified air seeded with calcium-rich particles, which revealed a marked improvement in calcium atomic emission peak-to-base (∼ 2-fold increase) and signal-to-noise ratios (∼ 4-fold increase) with the dual-pulse configuration. In addition to increased analyte response, dual-pulse LIBS yielded an enhanced single-particle sampling rate when compared to conventional LIBS. Transmission measurements with respect to the plasma-creating laser pulse were recorded for both single and dual-pulse methods over a range of temporal delays. In consideration of the spectroscopic and transmission data, the plasma-analyte interactions realized with a dual-pulse methodology are explained in terms of the interaction with the initially expanding plasma shock wave, which differs between gaseous and particulate phase analytes, as reported in a recent study [V. Hohreiter, D.W. Hahn, Calibration effects for laser-induced breakdown spectroscopy of gaseous sample streams: analyte response of gas-phase species versus solid-phase species, Anal. Chem. 77 (2005) 1118–1124].  相似文献   

19.
Synthetic magnetite (Fe3O4) was heated in air at 200–500 °C for different time periods to study its phase transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Laser Induced Breakdown Spectroscopy (LIBS) was used to take the spectra of these samples which were then compared to the spectra of standard iron oxide powders using linear correlation. The linear correlation procedure used showed probabilities of identification close to unity. Complementary techniques to LIBS, Fourier Transform Infrared (FTIR) spectroscopy and X-ray Diffraction (XRD) analysis were also used to characterize iron oxides. By taking advantage of the time gated detector capability of LIBS, the identification of iron oxide phases was found to be in good agreement with FTIR and XRD analysis. This study demonstrates that LIBS can be successfully applied to the characterization of the oxidation states of multivalent oxides of elements like Fe, Cr, Pb, and others.  相似文献   

20.
We report on our ongoing studies to develop Laser-Induced Breakdown Spectroscopy (LIBS) for planetary surface missions to Mars and other planets and moons, like Jupiter's moon Europa or the Earth's moon. Since instruments for space missions are severely mass restricted, we are developing a light-weight miniaturized close-up LIBS instrument to be installed on a lander or rover for the in-situ geochemical analysis of planetary surface rocks and coarse fines. The total mass of the instrument will be ≈ 1 kg in flight configuration. Here we report on a systematic performance study of a LIBS instrument equipped with a prototype laser of 216 g total mass and an energy of 1.8 mJ. The LIBS measurements with the prototype laser and the comparative measurements with a regular 40 mJ laboratory laser were both performed under Martian atmospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号