首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optical technique based on the reflectivity measurements of a thin film was used to experimentally study the spreading, evaporation, contact line motion, and thin film characteristics of drops consisting of a water-surfactant (polyalkyleneoxide-modified heptamethyltrisiloxane, called superspreader) solution on a fused silica surface. On the basis of the experimental observations, we concluded that the surfactant adsorbs primarily at the solid-liquid and liquid-vapor interfaces near the contact line region. At equilibrium, the completely wetting corner meniscus was associated with a flat adsorbed film having a thickness of approximately 31 nm. The calculated Hamaker constant, A = -4.47 x 10(-)(20) J, shows that this thin film was stable under equilibrium conditions. During a subsequent evaporation/condensation phase-change process, the thin film of the surfactant solution was unstable, and it broke into microdrops having a finite contact angle. The thickness of the adsorbed film associated with the drops was lower than that of the equilibrium meniscus. The drop profiles were experimentally measured and analyzed during the phase-change process as the contact line advanced and receded. The apparent contact angle, the maximum concave curvature near the contact line region, and the convex curvature of the drop increased as the drop grew during condensation, whereas these quantities decreased during evaporation. The position of the maximum concave curvature of the drop moved toward the center of the drop during condensation, whereas it moved away from the center during evaporation. The contact line velocity was correlated to the observed experimental results and was compared with the results of the drops of a pure alcohol. The experimentally obtained thickness profiles, contact angle profiles, and curvature profiles of the drops explain how the surfactant adsorption affects the contact line motion. We found that there was an abrupt change in the velocity of the contact line when the adsorbed film of the surfactant solution was just hydrated or desiccated during the phase-change processes. This result shows the effect of vesicles and aggregates of the surfactant on the shape evolution of the drops. For these surfactant-laden water drops, we found that the apparent contact angle increased during condensation and decreased during evaporation. However, for the drop of a pure liquid (n-butanol and 2-propanol) the apparent contact angle remained constant at a constant velocity during condensation and evaporation. The contact line was pinned during the evaporation and spreading of the surfactant-laden water drops, but it was not pinned for a drop of a pure alcohol (self-similar shape evolution).  相似文献   

2.
Image-analyzing interferometry is used to measure the apparent contact angle and the curvature of a drop and a meniscus during condensation and evaporation processes in a constrained vapor bubble (CVB) cell. The apparent contact angle is found to be a function of the interfacial mass flux. The interfacial velocity for the drop during condensation and evaporation is a function of the apparent contact angle and the rate of change of radius of curvature. The dependence of velocity on the apparent contact angle is consistent with Tanner's scaling equation. The results support the hypothesis that evaporation/condensation is an important factor in contact line motion. The main purpose of this article is to present the experimental technique and the data. The equilibrium contact angle for the drop is found experimentally to be higher than that for the corner meniscus. The contact angle is a function of the stress field in the fluid. The equilibrium contact angle is related to the thickness of the thin adsorbed film in the microscopic region and depends on the characteristics of the microscopic region. The excess interfacial free energy and temperature jump were used to calculate the equilibrium thickness of the thin adsorbed film in the microscopic region.  相似文献   

3.
The dynamics and stability of a thin, viscous film of volatile liquid flowing under the influence of gravity over a non-uniformly heated substrate are investigated using lubrication theory. Attention is focused on the regime in which evaporation balances the flow due to gravity. The film terminates above the heater at an apparent contact line, with a microscopically thin precursor film adsorbed due to the disjoining pressure. The film develops a weak thermocapillary ridge due to the Marangoni stress at the upstream edge of the heated region. As for spreading films, a more significant ridge is formed near the apparent contact line. For weak Marangoni effects, the film evolves to a steady profile. For stronger Marangoni effects, the film evolves to a time-periodic state. Results of a linear stability analysis reveal that the steady film is unstable to transverse perturbations above a critical value of the Marangoni parameter, leading to finger formation at the contact line. The streamwise extent of the fingers is limited by evaporation. The time-periodic profiles are always unstable, leading to the formation of periodically-oscillating fingers. For rectangular heaters, the film profiles after instability onset are consistent with images from published experimental studies.  相似文献   

4.
Equilibrium and dynamic electrowetting behavior of ultrathin liquid films of surfactant (SDS) laden water over silicon substrate (with native oxide) is investigated. A nonobtrusive optical method, namely, image analyzing interferometry, is used to measure the meniscus profile, adsorbed film thickness, and the curvature of the capillary meniscus. Significant advancement of the contact line of the liquid meniscus, as a result of the application of electric field, is observed even at relatively lower values of applied voltages. The results clearly demonstrate the balance of intermolecular and surface forces with additional contribution from Maxwell stress at the interline. The singular nature of Maxwell stress is exploited in this analysis to model the equilibrium meniscus profile using the augmented Young-Laplace equation, leading to the in situ evaluation of the dispersion constant. The electrowetting dynamics has been explored by measuring the velocity of the advancing interline. The interplay of different forces at the interface is modeled using a control volume approach, leading to an expression for the interline velocity. The model-predicted interline velocities are successfully compared with the experimentally measured velocities. Beyond a critical voltage, contact line instability resulting in emission of droplets from the curved meniscus has been observed.  相似文献   

5.
Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.  相似文献   

6.
We investigate the effects of evaporation on a gravity-driven flow of a viscous liquid on a heated solid surface. Vapor molecules are adsorbed on the dry areas of the solid and form a microscopic adsorbed film. The thickness of this film is calculated from the formulas for disjoining pressure and the principles of equilibrium thermodynamics. A lubrication-type approach is used to derive an evolution equation capable of describing both the macroscopic shape of the vapor-liquid interface and the adsorbed film on the vapor-solid interface. Under the conditions of negligible evaporation, the numerical solution of the evolution equation predicts translational motion and formation of capillary ridge, in agreement with previous investigations. Moderate evaporation is shown to slow down the flow and decrease the height of the capillary ridge, which implies a stabilizing effect of evaporation on the well-known instability observed in gravity-driven thin film flows. We also study the combined effects of evaporation and thermocapillary stresses and show that the latter act to reduce the velocity of the downward motion, but increase the height of the capillary ridge. Apparent contact angles are found from the solution and shown to increase with evaporation and contact line speed. For strong evaporation, steady state solutions are found such that evaporation balances the downward motion of the interface under the action of gravity.  相似文献   

7.
Ultrathin organic films of sucrose octaacetate (SOA) were deposited on 12.5 cm diameter silicon wafer substrates using high-pressure free meniscus coating (hFMC) with liquid CO2 (l-CO2) as a coating solvent. The dry film thickness across the wafer and the morphology of deposited films were characterized as a function of coating conditions-withdrawal velocity, solution concentration, and evaporation driving force (deltaP). When no evaporation driving force was applied (deltaP = 0), highly uniform films were deposited with thickness in the range of 8-105 angstroms over the entire concentration range (3-11 wt%). Uniform films were also obtained at low concentrations (3-5 wt%) with a low evaporation driving force (deltaP = 0.0138 MPa). However, films deposited at medium to high concentrations (7-11 wt%) were thicker (110-570 angstroms) and less uniform, with larger nonuniformities at higher applied evaporation driving forces. Optical microscopy and atomic force microscopy (AFM) were used to characterize film morphology including drying defects and film roughness. Films deposited without evaporation had no apparent drying defects and very low root-mean-square (RMS) roughness (1.4-3.8 angstroms). Spinodal-like dewetting morphologies including holes with diameters in the range of 100-300 nm, and surface undulations were observed in films deposited at medium concentration (7 wt%) and low deltaP (0.0138-0.0276 MPa). At higher concentrations and higher evaporative driving forces, spinodal-like dewetting morphologies disappeared but concentric ring defect structures were observed with diameters in the range 20-125 microm. The film thickness and morphology of SOA films deposited from 1-CO2 hFMC were compared to those deposited from toluene and acetone under normal dip coating. Films deposited from l-CO2 hFMC were much thinner, more uniform, and exhibited much fewer drying defects and lower RMS roughness.  相似文献   

8.
The equilibrium structure of the finite, interphase interfacial region that exists between a liquid film and a bulk vapor is resolved by molecular dynamics simulation. Argon systems are considered for a temperature range that extends below the melting point. Physically consistent procedures are developed to define the boundaries between the interphase and the liquid and vapor phases. The procedures involve counting of neighboring molecules and comparing the results with boundary criteria that permit the boundaries to be precisely established. Two-dimensional radial distribution functions at the liquid and vapor boundaries and within the interphase region demonstrate the physical consistency of the boundary criteria and the state of transition within the region. The method developed for interphase boundary definitions can be extended to nonequilibrium systems. Spatial profiles of macroscopic properties across the interphase region are presented. A number of interfacial thermodynamic properties and profile curve-fit parameters are tabulated, including evaporation/condensation coefficients determined from molecular flux statistics. The evaporation/condensation coefficients away from the melting point compare more favorably with transition state theory than those of previous simulations. Near the melting point, transition theory approximations are less valid and the present results differ from the theory. The effects of film substrate wetting on evaporation/condensation coefficients are also presented.  相似文献   

9.
The combination of in situ ellipsometry with atomic force microscopy in the liquid for the study of adsorption of creatine phosphokinase (CPK) onto silicon wafers was shown for the first time. The thickness, adsorbed amount, and topographic information of the adsorbed CPK layers were obtained under different pH conditions. The thickness values of adsorbed CPK layer determined by both techniques were in excellent agreement. At pH 4, CPK monomers present in solution adsorb, forming a very thin (approximately 0.8 nm) layer, indicating CPK unfolding. Upon increasing the pH to 6.8, the adsorbed layer is composed of a mixture of CPK dimers (native structure) and intermediates, increasing the film thickness (approximately 2.4 nm). At pH 9, CPK dimers form monolayers with the highest thickness (approximately 4.0 nm). The nature of interactions between CPK and Si wafers associated with the hydration force seems to control the degree of CPK unfolding upon adsorbing. The enzymatic activity of free CPK and of adsorbed CPK at pH 4, pH 6.8, and pH 9 was measured as a function of pH. In comparison to free CPK in solution, adsorbed CPK presented a shift of the optimal pH from 6.8 toward alkaline pH.  相似文献   

10.
11.
Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm.  相似文献   

12.
The deformation of a thin liquid film in the presence of a surfactant monolayer, varying temperature distributions, and limited mass flux is considered. Use of lubrication theory yields a coupled pair of partial differential equations for the film height and surfactant surface monolayer concentration. The long-wave stability of the isothermal film is examined over a wide range of parameter values. It is shown that droplet patterns are obtained under certain thermal conditions for both an isothermal and nonisothermal underlying substrate. For the case of a localized thermal gradient initially imposed at the air-liquid interface, severe film thinning beneath the heat source was observed, which was not accompanied by droplet formation; pseudo steady states are observed in this case. In all situations the surfactant is found to rigidify the air-liquid interface, retarding thermally driven flow, while evaporation (condensation) acts to destabilize (stabilize) the film.  相似文献   

13.
On the basis of quasiton theory an expression was obtained for the potential of interpartical attractive macroforces in a curved interface, being between liquid and gas, for a centrally symmetric case when thickness the DeltaL of the area under study is commensurable with the radius of curvature r(s) of a bubble or a drop. Expressions were also obtained for normal and tangential components of a stress tensor in the interface; using variational principles, it is shown that density profiles in the interface cannot be equilibrium, and there is a probability that the surface tension for the fine bubble or drop may be even negative.  相似文献   

14.
A novel 'fluid-wall thermal equilibrium model' for the wall-fluid heat transfer boundary condition has been developed in this paper to capture the nano-scale physics of transient phase transition of a thin liquid argon film on a heated platinum surface and the eventual colloidal adsorption phenomenon as the evaporation is diminishing using molecular dynamics. The objective of this work is to provide microscopic characterizations of the dynamic thermal energy transport mechanisms during the liquid film evaporation and also the resulting non-evaporable colloidal adsorbed liquid layer at the end of the evaporation process. A nanochannel is constructed of platinum (Pt) wall atoms with argon as the working fluid. The proposed model is validated by heating liquid argon between two Pt walls and comparing the thermal conductivity and change in internal energy to thermodynamic properties of argon. Later on, phase change process is studied by simulating evaporation of a thin liquid argon film on a Pt wall using the proposed model. Gradual evaporation of the liquid film occurs although the film does not vaporize completely. An ultra-thin layer of liquid argon is noticed to have "adsorbed" on the platinum surface. An analysis similar to the theoretical study by Hamaker (1937) is performed for the non-evaporating film and the value of the Hamaker-type constant falls in the typical range. This analysis is done to quantify the non-evaporating film with an attempt to use molecular dynamics simulation results in continuum mechanics.  相似文献   

15.
A method for measuring disjoining pressure of a molecularly thin liquid film on a solid surface by using a microfabricated groove has been developed. The shape of the meniscus of a thin film in the microgroove was measured with an atomic force microscope, and the disjoining pressure was obtained from the capillary pressure obtained from the measured curvature of the meniscus. Our method is applicable to a film with a thickness greater than the diameter of gyration in the polymer molecule. Moreover, the method can detect the changes in the disjoining pressure caused by ultraviolet light irradiation, and it is effective in investigating the intermolecular interaction between a thin film and a solid surface.  相似文献   

16.
A novel method to measure ultrathin poly(o-phenylenediamine) (PPD) film electropolymerized on gold electrode in liquid was developed. It is based on the force versus distance curve (force curve) of atomic force microscopy (AFM). When 1-0.25 μm/s was chosen as the rising rate of the scanner, and 50% of the confidence interval (CI) as the qualifying threshold value, the thickness of the hydrated polymer film could be calculated. This result was compared with one obtained from an AFM image. A step-like electrode fabricated by a photolithographic process was used. The height difference of the electrode before and after the PPD coating was imaged in liquid, and then the real thickness, 19.6±5.2 nm, was obtained. The sample was also measured by estimating the transition range of the force curve of hydrated PPD film, and the thickness of the hydrated PPD film was determined to be 19.3±8.2 nm. However, the results calculated by integrating the electropolymerized charge for the oxidation process of o-phenylenediamine (o-PD) was only one-third as large as it was when using the two previously described methods. This indicated that the structure of hydrated PPD film might have been swollen.  相似文献   

17.
The thermodynamic stability of boundary lubricant films based upon mixtures of liquid perfluoropolyethers (PFPEs) is reported. Mixtures of A20H-2000 with Zdols 2000, 2500, and 4000 and Zdol-TX 2200 on amorphous carbon nitride films are investigated. An optical surface analyzer is used to image the autophobic dewetting of the mixture PFPE films. The critical dewetting thickness coincides with the monolayer thickness of the adsorbed mixture PFPE films as determined by the changes in the surface energy as a function of lubricant film thickness. The critical dewetting thickness varies linearly with mixture concentration.  相似文献   

18.
The thermodynamic stability of thin films of the perfluoropolyether (PFPE) Z-Tetraol, as a function of molecular weight, on amorphous nitrogenated carbon, CNx, is investigated. An optical surface analyzer is used to image the autophobic dewetting of the Z-Tetraol films. Film dewetting results when the PFPE film thickness applied to the CNx surface exceeds a critical value. This critical dewetting thickness is identified as the monolayer thickness of the adsorbed PFPE film via measurements of the changes in the surface energy as a function of lubricant film thickness. The observed dewetting coincides with the film thickness at which the disjoining pressure goes to zero. The critical dewetting thickness is dependent on the PFPE molecular weight.  相似文献   

19.
Molecular dynamics simulations are performed to study the evaporation and condensation of n-dodecane (C(12)H(26)) at temperatures in the range 400-600 K. A modified optimized potential for liquid simulation model is applied to take into account the Lennard-Jones, bond bending and torsion potentials with the bond length constrained. The equilibrium liquid-vapor n-dodecane interface thickness is predicted to be ~1.2-2.0 nm. It is shown that the molecular chains lie preferentially parallel to the interface in the liquid-vapor transition region. The predicted evaporation/condensation coefficient decreased from 0.9 to 0.3 when temperature increased from 400 to 600 K. These values can be used for the formulation of boundary conditions in the kinetic modeling of droplet heating and evaporation processes; they are noticeably different from those predicted by the transition state theory. We also present the typical molecular behaviors in the evaporation and condensation processes. The molecular exchange in condensation, typical for simple molecules, has never been observed for n-dodecane molecular chains.  相似文献   

20.
This paper reports Monte Carlo simulations of the adsorption or intrusion in cylindrical silica nanopores. All the pores are opened at both ends towards an external bulk reservoir, so that they mimic real materials for which the confined fluid is always in contact with the external phase. This realistic model allows us to discuss the nature of the filling and emptying mechanisms. The adsorption corresponds to the metastable nucleation of the liquid phase, starting from a partially filled pore (a molecular thick film adsorbed at the pore surface). On the other hand, the desorption occurs through the displacement at equilibrium of a gas/liquid hemispherical interface (concave meniscus) along the pore axis. The intrusion of the non-wetting fluid proceeds through the invasion in the pore of the liquid/gas interface (convex meniscus), while the extrusion consists of the nucleation of the gas phase within the pore. In the case of adsorption, our simulation data are used to discuss the validity of the modified Kelvin equation (which is corrected for both the film adsorbed at the pore surface and the curvature effect on the gas/liquid surface tension).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号