首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of the reaction of OH + 2-ethylfuran has been investigated using the G3MP2 and G3MP2B3 levels of theory. The geometric parameters of all species involved in the reaction have been optimized at the MP2 and B3LYP levels of theory with 6-311G(d,p) basis set. The overall profile of doublet potential energy surface (PES) for the OH + 2-ethylfuran reaction has been constructed using the G3MP2 and G3MP2B3 methods. The results show that the addition-elimination mechanism dominates the OH + 2-ethylfuran reaction and the major products are CH3CH2C(OH)CHCHCHOH (P8) and CH3CH2COCHCHCHOH (P6).  相似文献   

2.
Vibrational analysis of tellurium tetrachloride, TeCl4, was performed with Hartree–Fock (HF), MP2, and generalized gradient approximation density functional theory (DFT) methods supplemented with polarized double-zeta split valence (DZVP) basis sets and relativistic effective core potentials (RECP) of Hay and Wadt. The molecular geometry is best reproduced at the HF and MP2/RECP+DZVP [polarized Hay and Wadt RECP for Te and 6–31G(d) basis set for Cl] levels of theory. The DFT methods gave rise to poorer results, especially those using Becke's 1988 exchange functional. Generally, the vibrational frequencies calculated by the MP2 and B3-type DFT methods with the all electron and RECP+DZVP basis sets as well as at the HF/RECP level were in satisfactory accord with the experimental data. The agreement was good enough to assist the assignment of the measured vibrational spectra. The best agreement with the experimental vibrational frequencies was achieved with the scaled HF/RECP force field. Consistent results were obtained for the unobserved A24) fundamental, where the results of the best methods were within 4 cm−1. The best force fields were obtained with the following methods: Becke3–Lee–Yang–Parr and Becke3–Perdew/all electron basis, MP2 and Becke3-Perdew/RECP+DZVP, and HF/RECP. The methods using RECPs are advantageous for large-scale computations. The RECP basis set effectively compensates the errors of the HF method for TeCl4; however, it provides poor results with correlated methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 308–318, 1998  相似文献   

3.
An extension of the SIBFA polarizable molecular mechanics procedure to flexible oligopeptides is reported. The procedure is evaluated by computing the relative conformational energies, deltaE(conf), of the alanine tetrapeptide in 10 representative conformations, which were originally derived by Beachy et al. (J Am Chem Soc 1997, 119, 5908) to benchmark molecular mechanics procedures with respect to ab initio computations. In the present study, a particular emphasis is on the separable nature of the components of the energy and the particular impact of the polarization energy component on deltaE(conf). We perform comparisons with respect to single-point HF, DFT, LMP2, and MP2 computations done at the SIBFA-derived energy minima. Such comparisons are made first for the 10 conformers derived from phi/psi torsional angle energy-minimization (the rigid rotor approach), and, in a second step, after allowing additional relaxation of the C(alpha) centered valence angles. In both series of energy-minimization, the SIBFA deltaE(conf) compared best with the LMP2 results using the 6-311G** basis set, the rms being 1.3 kcal/mol. In the absence of the polarization component, the rms is 3.5 kcal/mol. In both series of minimizations, the magnitudes of deltaE(conf), computed as differences with respect to the most stable conformer taken as energy zero, decrease along the series: HF > DFT > LMP2 > SIBFA > MP2, indicative of increasing stabilization of the most highly folded conformers.  相似文献   

4.
Ionic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n = 1-4) and HSO3Cl-NH3-(H2O)n (n = 0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func- tional (B3LYP) method and the second order M?ller-Plesset approximation (MP2) method with the 6-311 G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.  相似文献   

5.
The semiempirical PM5 method has been used to calculate fully optimized structures of magnesium-bacteriochlorin, magnesium-chlorin, magnesium-porphin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), and d, and bacteriochlorophylls a, b, c, d, e, f, g, and h with all homologous structures. Hartree-Fock/6-31G* ab initio and density functional B3LYP/6-31G* methods were used to optimize structures of methyl chlorophyllide a, chlorophyll c(1), and methyl bacteriochlorophyllides a and c for comparison. Spectroscopic transition energies of the chromophores and their 1:1 or 1:2 solvent complexes were calculated with the Zindo/S CIS method. The self-consistent reaction field model was used to estimate solvent shifts. The PM5 calculations predict planar structure of the porphyrin ring and central position of the four coordinated magnesium atoms in all pigments studied, in accord with the experimental, ab initio, and density functional results, a significant improvement as compared to the older semiempirical PM3 approach. Only small differences in PM5 and B3LYP/6-31G* or Hartree-Fock/6-31G* minimum energy geometries of the reference molecules were observed. Calculations show that in 1:1 solvent complexes, where the magnesium atom is five coordinated, the magnesium atom is shifted out of the plane of the porphyrin ring towards the solvent molecule, while the hexa coordinated 1:2 complexes are again planar. The PM5 method gives atomic charges that are comparable with those obtained from the Hartree-Fock/6-31G* and B3LYP/6-31G* calculations. The single point ZINDO/S CIS calculations with PM5 minimum energy structure gave excellent correlations between calculated and experimental transition energies of the chlorophylls and bacteriochlorophylls studied. Such correlations may be used for prediction of transition energies of the chromophores in protein binding sites. Calculations also predict existence of dark electronic states below the main Soret absorption band in all chromophores studied. The results suggest that the semiempirical PM5 method is a fairly reliable and computationally efficient method in predicting molecular parameters of porphyrin-like molecules.  相似文献   

6.
The molecular structure, vibrational spectrum, standard thermodynamic functions, and enthalpy of formation of free base phthalocyanine (Pc) have been studied using the density functional theory B3LYP procedure, as well as the ab initio Hartree–Fock method. Various basis sets 3‐21G, 6‐31G*, and LANL2DZ have been employed. The results obtained at various levels are discussed and compared with each other and with the available experimental data. It is shown that calculations performed at the Hartree–Fock level cannot produce a reliable geometry and related properties such as the dipole moment of Pc and similar porphyrin‐based systems. Electron correlation must be included in the calculations. The basis set has comparatively less effect on the calculated results. The results derived at the B3LYP level using the smaller 3‐21G and LANL2DZ basis sets are very close to those produced using the medium 6‐31G* basis set. The geometry of Pc obtained at the B3LYP level has D2h symmetry and the diameter of the central macrocycle is about 4 Å. The enthalpy of formation of Pc in the gas phase has been predicted to be 1518.50 kJ/mol at the B3LYP/6‐311G(2d,2p)//B3LYP/6‐31G* level via an isodesmic reaction. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

7.
Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A.  相似文献   

8.
The performance of different conventional ab initio methodologies and density functional procedures is compared through its application to the theoretical calculation of the bond distance and harmonic vibrational frequencies of the OsO4 molecule. The problem of the basis set is first considered, with up to nine different basis sets being tested in calculations using the hybrid Becke3LYP density functional, and the most appropriate basis set is used in the comparison of Hartree–Fock, post‐Hartree–Fock, and density functional methods. The post‐Hartree–Fock methods analyzed are MP2, CISD, and CCSD(T), and the density functionals tested are SVWN, BLYP, BPW91, and Becke3LYP. The results show that for this particular system density functional methods perform better than do HF‐based methods with the exception of CCSD(T), which gives the best overall results. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 544–551, 2000  相似文献   

9.
Ab initio and density functional theory (DFT) are applied to study the spectroscopic constants, molecular properties, and nature of force between two rare gas atoms of the weakly bound diatomic molecules He2, Ne2, Ar2, HeNe, and HeAr in the Lennard‐Jones potential. A simple method is developed to calculate the spectroscopic constants of these molecules. The calculated spectroscopic constants and molecular properties agree very well with the experimental and theoretical results wherever available. Most of the spectroscopic constants and molecular properties are reported for the first time. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

10.
We investigated structures, vibrational frequencies, and rotational barriers of disilane (Si2H6), hexafluorodisilane (Si2F6), and hexamethyldisilane (Si2Me6) by using ab initio molecular orbital and density functional theories. We employed four different levels of theories (i.e., HF/6–31G*, MP2/6–31G*, BLYP/6–31G*, and B3LYP/6–31G*) to optimize the structures and to calculate the vibrational frequencies (except for Si2Me6 at MP2/6–31G*). MP2/6–31G* calculations reproduce experimental bond lengths well, while BLYP/6–31G* calculations largely overestimate some bond lengths. Vibrational frequencies from density functional theories (BLYP/6–31G* and B3LYP/6–31G*) were in reasonably good agreement with experimental values without employing additional correction factors. We calculated the ΔG(298 K) values of the internal rotation by correcting zero-point vibration energies, thermal vibration energies, and entropies. We performed CISD/6–31G*//MP2/6–31G* calculations and found the ΔG(298 K) values for the internal rotation of Si2H6, Si2F6, and Si2Me6 to be 1.36, 2.06, and 2.69 kcal/mol, respectively. The performance of this level was verified by using G2 and G2(MP2) methods in Si2H6. According to our theoretical results, the ΔG(298 K) values were marginally greater than the ΔE(0 K) values in Si2F6 and Si2Me6 due to the contribution of the entropy. In Si2H6 the ΔE(0 K) and ΔG(298 K) values were coincidently similar due to a cancellation of two opposing contributions between zero-point and thermal vibrational energies, and entropies. Our calculated ΔG(298 K) values were in good agreement with experimental values published recently. In addition, we also performed MM3 calculations on Si2H6 and Si2Me6. MM3 calculated rotational barriers and thermodynamic properties were compared with high level ab initio results. Based on this comparison, MM3 calculations reproduced high level ab initio results in rotational barriers and thermodynamic properties of Si2H6 derivatives including vibrational energies and entropies, although large errors exist in some vibrational frequencies. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1523–1533, 1997  相似文献   

11.
吴德印  任译  刘玉明  田安民  H.SUN 《化学学报》1998,56(10):948-955
用从头算和密度泛函数理论研究了1,3-二氟丙烷的构象和电子结构。在计算的各种理论水平下,GG构象是最稳定构象,AG构象次之。利用分子力场的非键作用定量化旁式效应,由MM2力场的非键参数计算的结果较为合理。对于GG和AG构象,在HF/6-31G^*和HF/6-31+G^*^*水平预测的构象分布与实验值接近。  相似文献   

12.
The FTIR and FT-Raman spectra of 2-amino-4,6-dimethoxypyrimidine (2A46DMP) has been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2A46DMP were obtained by the ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

13.
14.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models for a series of thiazolone derivatives as novel inhibitors bound to the allosteric site of hepatitis C virus (HCV) NS5B polymerase were developed based on CoMFA and CoMSIA analyses. Two different conformations of the template molecule and the combinations of different CoMSIA field/fields were considered to build predictive CoMFA and CoMSIA models. The CoMFA and CoMSIA models with best predictive ability were obtained by the use of the template conformation from X-ray crystal structures. The best CoMFA and CoMSIA models gave q (2) values of 0.621 and 0.685, and r (2) values of 0.950 and 0.940, respectively for the 51 compounds in the training set. The predictive ability of the two models was also validated by using a test set of 16 compounds which gave r (pred) (2) values of 0.685 and 0.822, respectively. The information obtained from the CoMFA and CoMSIA 3D contour maps enables the interpretation of their structure-activity relationship and was also used to the design of several new inhibitors with improved activity.  相似文献   

15.
Density functional theory calculations were performed to study the stereo‐controlling step of the direct aldol reaction between acetone and 4‐nitrobenzaldehyde catalyzed by (S,S)‐proline dipeptide. Four transition state structures have been determined using B3LYP functional with the 6‐31G* basis set, corresponding to the anti and syn arrangements of the methylene moiety with respect to the carbonyl group in enamine intermediate, and to the si and re attacks to the aldehyde carbonyl carbon, respectively. Solvent effects of DMSO on the stereo‐controlling step were investigated with Onsager model. The energy results of the transition states reveal the origin of poor enantioselectivity for the reaction. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

16.
We present calculations of the total energy per unit cell for different bond alternations of the C-C bonds bridging the distance between two aromatic rings in poly(para-phenylene vinylene) (PPV), using two different parametrizations of the energy functional in the local density approximation (LDA) and the ab initio Hartree-Fock (HF) method. For the application of correlation corrections to the HF results the system is already too large. We find that even simple LDA methods are reliable alternatives to the ab initio HF method for the calculation of potential surfaces in polymers with large unit cells. The results in turn can be used to determine parameters for model Hamiltonians necessary for theoretical studies of the dynamics of nonlinear quasiparticles in the polymers. We further present the LDA band structures of PPV together with their HF and correlation (many body perturbation theory of 2nd order in Møller-Plesset partitioning, MP2) corrected counterparts. We find that the fundamental gap obtained is too large both with HF and with the correlation corrected band structure compared to experiment. However, we use only a modest correlation method and a small basis set, which already brings us to the limits of the computers available to us. The LDA gaps on the other hand are too small which, however, could be corrected with the help of self interaction corrections. None of the latter methods would lead to exceedingly large computation times.  相似文献   

17.
The electrical conductivities and plausible charge‐ordering states in the room temperature (r.t.) phase for MMX chains [Ni2(dta)4I] and [Pt2(dta)4I] (dta = CH3CS) have been analyzed with periodic density functional theory (DFT) and correlated ab initio calculations combined with the effective Hamiltonian theory. Periodic DFT calculations show a more delocalized nature of the ground state in [Pt2(dta)4I] compared to [Ni2(dta)4I], which features a rather large energy gap between the occupied and empty bands, and charge polarized dimer units. A larger electrical conductivity for the Pt chain can be expected, especially because the Fermi level lies within a band with contributions from Pt and I orbitals. Electronic structure parameters extracted from ab initio cluster calculations show that the large difference between the observed conductivities at 300 K for Ni and Pt compounds, of 3 orders of magnitude, cannot be explained from the parameters extracted from an embedded M2(dta)4I2 dimer fragment alone. When tetramer fragments are considered, we observe that the interdimer transfer integral (t) between neighboring M2 units connected by an iodine atom at correlated level is comparable in both chains. On the other hand, the energy to transfer an electron from a dimer to the neighboring one (Coulomb repulsion U) is three times larger in the Ni compound with respect to the Pt chain, in line with the poor conductivity of the former. The electronic structure of the M4(dta)8I3 fragment points to an alternate charge‐polarization state for Ni and an average valence state for Pt when the r.t. X‐ray structure is considered. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The relative stabilities of the 17 possible isomers for C80O2 based on C80 (D5d) were studied using Becke three parameters plus Lee, Yang, and Parr's (B3LYP) method and 6‐31G (d) basis set in density functional theory. The most stable geometry of C80O2 was predicted to be 23,24,27,28‐C80O2 (A) with annulene‐like structures, where the additive bonds are those between two hexagons (6/6 bonds) near the equatorial belt of C80 (D5d). Electronic spectra of C80O2 isomers were calculated based on the optimized geometries using intermediate neglect of differential overlap (INDO) calculation. Compared with those of C80 (D5d), the first absorptions in the electronic spectra of C80O2 are blue‐shifted owing to the wide energy gaps. 13C nuclear magnetic resonance spectra and nucleus independent chemical shifts of the C80O2 isomers were computed at B3LYP/6‐31G level. The chemical shifts of the bridged carbon atoms in the epoxy structures of C80O2 compared with those of the bridged carbon atoms in the annulene‐like structures are changed upfield. Generally, the isomers with the annulene‐like structures of C80O2 are more aromatic than those with the epoxy structures. The addition of the oxygen atoms near the pole of C80 (D5d) is favorable to improving the aromaticities of C80O2. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

19.
Ab initio molecular orbital calculations of doubly negative charged B16H162-(D2) and neutral B16H16(Td) have been done at the HF/6-31G level.They are predicted to be chemically and kinetically stable by vibrational analyses on their respective energy hypersurface of the HF/6-31G level.The geometrical structure of the species B16H1622-(D2) was discussed.  相似文献   

20.
Ab initio molecular orbital calculations of doubly negative charged B16H2?16(D2) and neutral B16H16(Td) have been done at the HF/6-31G level. They are predicted to be chemically and kinetically stable by vibrational analyses on their respective energy hypersurface of the HF/6-31G level. The geometrical structure of the species B16H216 (D2) was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号