首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous titanium dioxide nanosized powder with high specific surface area and anatase wall was synthesized via hydrothermal process by using cetyltrimethylammonium bromide (CTAB) as surfactant-directing agent and pore-forming agent. The resulting materials were characterized by XRD, nitrogen adsorption, FESEM, TEM, and FT-IR spectroscopy. The as-synthesized mesoporous TiO2 nanoparticles have mean diameter of 17.6 nm with mean pore size of 2.1 nm. The specific surface area of the as-synthesized mesoporous nanosized TiO2 exceeded 430 m2/g and that of the samples after calcination at 600 degrees C still have 221.9 m2/g. The mesoporous TiO2 nanoparticles show significant activities on the oxidation of Rhodamine B (RB). The large surface area, small crystalline size, and well-crystallized anatase mesostructure can explain the high photocatalytic activity of mesoporous TiO2 nanoparticles calcined at 400 degrees C.  相似文献   

2.
Nano-TiO2 is frequently used as an optimal photocatalyst, since it is nontoxic, low cost, and environmentally friendly, especially for its photocatalytic oxidation action. However, its photocatalytic reducing action has not been widely researched. In this study, TiO2 doped with different concentrations of manganese was prepared by the sol–gel method and characterized using different techniques to analyze the surface structure, phase composition, and surface elements of the different materials. To investigate the photocatalytic activity, Mn–TiO2 was used for photocatalytic reduction of Cr(VI). Moreover, various organic pollutants were added to determine whether they enhanced the photocatalytic reduction of Cr(VI). The experiments indicated that the presence of Mn in TiO2 could enhance its photocatalytic reduction action, especially at 0.02 % molar ratio. Manganese ions doped in TiO2 behaved as electron accumulation sites. In addition, pH value, and photocatalyst dosage were investigated to analyze their effects on the photocatalytic reduction action. The results show that lower pH value improved the efficiency of photocatalytic reduction; there were no significant changes in the photocatalytic reduction rate with dosage above 1.0 g/L. In the presence of different electron donors (organic pollutants as hole scavengers), the photocatalytic reduction of Cr(VI) was generally improved. In short, manganese-doped TiO2 exhibited improved photocatalytic reduction activity, especially in cooperation with various organics.  相似文献   

3.
The first step of the photocatalytic degradation of methylene blue (MB) on anatase is photocatalytic reduction with subsequent decomposition of the dye itself and its leucobase. At low catalyst concentrations (≤2 g/L), the dye decomposition rate constant increases with increasing anatase concentration. A plateau appears for anatase concentrations above 2 g/L. Under steady-state conditions, the reaction kinetics is described by the Michaelis–Menten equation if the catalyst concentration is significantly greater than the MB concentration, which permits us to determine the kinetic parameters of the degradation process.  相似文献   

4.
[Sn(acac)(2)]Cl(2) is chemisorbed on the surfaces of anatase TiO(2)via ion-exchange between the complex ions and H(+) released from the surface Ti-OH groups without liberation of the acetylacetonate ligand (Sn(acac)(2)/TiO(2)). The post-heating at 873 K in air forms tin oxide species on the TiO(2) surface in a highly dispersed state on a molecular scale ((SnO(2))(m)/TiO(2)). A low level of this p block metal oxide surface modification (~0.007 Sn ions nm(-2)) accelerates the UV-light-activities for the liquid- and gas-phase reactions, whereas in contrast to the surface modification with d block metal oxides such as FeO(x) and NiO, no visible-light response is induced. Electrochemical measurements and first principles density functional theory (DFT) calculations for (SnO(2))(m)/TiO(2) model clusters (m = 1, 2) indicate that the bulk (TiO(2))-to-surface interfacial electron transfer (BS-IET) enhances charge separation and the following electron transfer to O(2) to increase the photocatalytic activity.  相似文献   

5.
6.
利用溶胶-凝胶法制备纳米二氧化钛光催化剂,探讨了其光催化降解废水中典型含氮杂环化合物喹啉的动力学行为。实验条件下,TiO2光催化降解喹啉的反应为准一级反应,可用Langmuir-Hinshelwood动力学模型描述,其表达式为r=0.296kct/(1+0.296ct),其中,lnk =-0.411 1lnc0+2.278。  相似文献   

7.
以十六烷基三甲基溴化铵为模板剂,通过水解钛酸正丁酯合成了介孔二氧化钛分子筛,探讨了合成条件的影响。采用X射线粉末衍射(XRD)、红外光谱(FT-IR)、透射电子显微镜(TEM)和N2吸附-脱附等技术对介孔二氧化钛的晶相、结构、形貌、比表面积和孔径分布进行了表征。实验结果表明:得到的介孔二氧化钛分子筛的孔径为4-4.3nm,用抽提的方法去除模板剂得到的介孔二氧化钛的比表面积比焙烧的要高。以甲基橙为模型污染物,检验了所合成介孔二氧化钛的光催化性质。  相似文献   

8.
The reactions between SO2 and O2 were carried out in the presence of TiO2 and NiO under various partial pressures of SO2 and O2 at temperatures from 240 to 330°C. TiO2 and NiO were pretreated by applying an annealing effect from which the catalysts would have the different activity. The rates are the highest for TiO2 pretreated at high temperature in the region of 400 to 600deg;C in vacuum, 1.21 × 10?4 mmHg. In contrast, the rates are the lowest for NiO pretreated at high temperaturefrom 350 to 550°C. The data have been correlated with 1.4 and first-order kinetics for TiO2 and NiO, respectively. A reaction mechanism to explain the data was suggested. The quantities of anionic vacancies in TiO2 surfaces and of positive holes in NiO appeared to be paramount in determining the type of kinetics.  相似文献   

9.
A composite photocatalyst (Ho/TiO(2)/Fe(3)O(4)) with Ho-doped anatase titanium dioxide (Ho/TiO(2)) shell and a magnetite core was prepared by coating photoactive Ho/TiO(2) onto a magnetic Fe(3)O(4) core through the hydrolysis of tetrabutyltitanate (Ti(OBu)(4), TBT) in water/oil (w/o) microemulsion with precursors of Ho(NO(3))(3) and TBT in the presence of Fe(3)O(4) nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Vis diffusive reflectance spectroscopy (UV-Vis DRS). The effect of Ho ion content on the photocatalytic activity was studied. The photodegradation behavior of the prepared photocatalyst under UV and visible light was investigated in aqueous solution using methyl orange (MO) as target pollutant. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photo-oxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Ho/TiO(2) was tightly bound to Fe(3)O(4) and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.  相似文献   

10.
空气中苯系物的TiO2光催化降解研究进展   总被引:4,自引:0,他引:4  
本文对近年来空气中挥发性苯系物的TiO2光催化降解机理、TiO2光催化降解苯系物的主要影响因素以及TiO2的失活与再生方法等的研究进展进行了较详尽的评述,并对今后的研究工作进行了展望。  相似文献   

11.
Titanium dioxide with a mesoporous structure, when photoactivated in water, demonstrates an unprecedented photocatalytic activity, driven strongly by an adsorption degree of molecules onto the catalyst surface, which promotes a preferential conversion of a well-adsorbed molecule. This catalyzes a selective transformation of a well-adsorbed molecule into a less-adsorbed molecule, so-labeled "stick-and-leave" transformation, which promotes a direct hydroxylation of benzene to phenol, one of the most difficult synthetic reactions, with very high selectivity (>80%) and using water as a source of oxidant.  相似文献   

12.
The electrodeposition–annealing route to fabricating thin film of the promising photocatalyst material anatase-titanium dioxide (anatase-TiO2) has been studied. The sample was deposited with a solution of N,N-dimethylformamide containing titanium compound by controlled-potential technique. SEM image showed the annealed sample at 600 °C for 1 h under air provided a continuous film with a thickness of ca. 350 nm. In this sample, X-ray photoelectron spectrum corresponding to the Ti 2p peak assigned to a chemical bond of TiO2 and X-ray diffraction peaks assigned to the anatase phase were observed, respectively. Electrochemical oxidation in sodium sulfate solution on this annealed film was enhanced in the presence of UV light radiation. These results confirm the successful synthesis of photocatalytic anatase-TiO2 film by the electrodeposition and annealing process.  相似文献   

13.
TiO2 was prepared by sol-gel method using tetrabutyl titanate as precursor. TiO2 was loaded on Bi12TiO20. The photocatalyst with different TiO2 loading was calcined at 723 K. The photocatalytic activity of decomposition gaseous benzene was investigated in a batch reactor. The prepared photocatalyst was characterized by UV-vis diffuse reflectance. The result showed that TiO2/Bi12TiO20 absorbed much more ultraviolet light than Ti02 in the ultraviolet light region and showed red shift. The results indicated that the prepared photocatalyst can greatly promote the photocatalytic activity. The 2.0% TiO2/Bi12TiO20 system exhibited the highest photocatalytic activity.  相似文献   

14.
The kinetics of the decomposition of hydrogen peroxide was studied in aqueous medium in the temperature range 25–40°C in the presence of Wofatit KPS-resin in the form of Cu(II)-ammine complex ions. The rate constant was deduced at various degrees of resin cross-linkage and different concentrations of hydrogen peroxide. The order of the decomposition reaction varied from first order to half order, i.e., the order of the reaction decreased with increasing the concentration of H2O2. The decomposition process was found to be a catalytic reaction which was controlled by the chemical reaction of H2O2 molecules with the active species inside the resin particles. The mechanism of the reaction can be summarized by the equation in which the subsequent reactions of the probable active complex are discussed.  相似文献   

15.
Sol-gel synthesis of titania typically produces a mixture of brookite and anatase. Rietveld refinements were used to systematically track the brookite content and particle size as functions of synthetic variables. Results demonstrate that brookite content and anatase particle size decrease with decreasing Ti/H(2)O ratios. In syntheses at pH 3, the addition of HCl resulted in increased amorphous content compared to samples synthesized using HNO(3). Similar amorphous contents were observed for particles prepared at pH 6-9. Hydrothermal aging for 4 h at 200 degrees C of sol-gel products containing substantial amorphous titania resulted in higher brookite content than did hydrothermal aging of sol-gel products containing little to no amorphous titania. Finally, dialysis prior to hydrothermal aging appeared to inhibit phase transformation from brookite to anatase in aged materials. Results presented demonstrate that considerable control over the relative anatase and brookite contents can be achieved through control of synthetic variables.  相似文献   

16.
Yellowish S-containing TiO2 (S-TiO2) powders were prepared by calcination of a mixture of titanium(III) chloride and ammonium thiocyanate solutions. Three kinds of S-TiO2 were prepared by varying the concentration of ammonium thiocyanate (0.5, 1 or 13 M). X-ray photoelectron spectroscopy spectra of the S-TiO2 showed that sulfur atoms existed on the surface of TiO2 powders. But the peaks assigned to S disappeared after Ar+ etching, which means that these atoms were not doped in the bulk of the TiO2 powders. While UV-visible absorption spectra of S-TiO2 showed that the absorption edges of these photocatalysts were seen to shift to a longer wavelength (lower band gap energy) than those of undoped rutile TiO2 prepared and commercial anatase type TiO2 (ST-01). The S-TiO2 (1 M) exhibited higher photocatalytic activity than ST-01 for degradation of methylene blue in aqueous solution under visible light irradiation (lambda > 400 nm). It was also confirmed by IR spectroscopy that acetaldehyde in oxygen under visible light irradiation (lambda > 400 nm) was decomposed to acetic acid by the S-TiO2 and ST-01 at the first decomposition step.  相似文献   

17.
《Comptes Rendus Chimie》2017,20(7):710-716
The photocatalytic degradation of an antibiotic (spiramycin) has been studied using immobilized titanium dioxide (TiO2) as a photocatalyst in a laboratory reactor under ultraviolet illumination (365 nm). The degradation of the antibiotic was monitored by ultraviolet spectrophotometry and high-pressure liquid chromatography and confirmed by an antibacterial activity evaluation. Two types of TiO2 (P25 and PC500) immobilized on glass plates were compared. For TiO2 PC500 immobilization on glass and paper was also studied. A slightly better degradation was obtained with TiO2 P25 for which the degradation kinetics were investigated. The Langmuir–Hinshelwood kinetic model is satisfactorily obeyed at initial time and in the course of the reaction. Adsorption and apparent rate constants were determined. These results show a complete degradation of spiramycin, which was confirmed by the inhibition of the antibacterial activity of Staphylococcus xylosus, when exposed to spiramycin solutions treated with photocatalyst for a short time. In addition, the codegradation of spiramycin and tylosin was investigated and showed that tylosin had a higher affinity to the catalyst TiO2 P25 than spiramycin. The complete degradation of spiramycin confirms the feasibility of such a photocatalytic treatment process for spiramycin elimination from contaminated water.  相似文献   

18.
Removal from air and decomposition of dimethyl methylphosphonate (DMMP) over high surface area anatase TiO(2) at ambient temperature have been quantitatively studied by employing Fourier transform infrared (FTIR) technique under static conditions. In the first scenario of air purification, DMMP underwent reactive adsorption that upon completion was followed by photocatalytic oxidation. DMMP was captured over the TiO(2) surface at the speed of external diffusion. Hydrolysis of adsorbed DMMP led to methanol and methyl methylphosphonate (MMP). At low DMMP coverage quantity, it hydrolyzed completely with the formation of completely surface-bound methanol at 1% relative humidity (RH) and mostly gaseous methanol at 50% RH. Photocatalytic oxidation generated CO(2) as the only carbonaceous gaseous product and bidentate formates as the intermediate surface product. At high DMMP coverage quantity, it was captured incompletely and hydrolyzed partially with CH(3)OH in the gas phase only, 50% RH enhancing both processes. Photocatalytic oxidation generated gaseous HCOOH, CO, and CO(2) and was incomplete due to catalyst deactivation by nonvolatile products. In the second scenario of air purification, DMMP underwent adsorption, hydrolysis, and photooxidation at the same time. It resulted in the quickest removal of DMMP from the gas phase and completion of oxidation in 30 min, suggesting this process for practical air decontamination. At least 0.8 nm(2) of TiO(2) surface per each DMMP molecule should be available for complete purification of air.  相似文献   

19.
Doped titanium dioxide nanopowders (M:TiO2; M=Fe, Co, Nb, Sb) with anatase structure were successfully synthesized through an hydrothermal route preceded by a precipitation doping step. Structural and morphological characterizations were performed by powder XRD and TEM. Thermodynamic stability studies allowed to conclude that the anatase structure is highly stable for all doped TiO2 prepared compounds. The photocatalytic efficiency of the synthesized nanopowders was tested and the results showed an appreciable enhancement in the photoactivity of the Sb:TiO2 and Nb:TiO2, whereas no photocatalytic activity was detected for the Fe:TiO2 and Co:TiO2 nanopowders. These results were correlated to the doping ions oxidation states, determined by Mössbauer spectroscopy and magnetization data.  相似文献   

20.
The synthesis of SiO2 core-TiO2 shell composites from a titanium dioxide sol and a suspension of microspherical silicon dioxide is described. The main factors ensuring the formation of a composite with a preset morphology are the size and charge of the TiO2 sol particles (10–45 nm) and silicon dioxide core particles (300–700 nm), the pH values of the suspensions of the starting components and the resulting composite, and the proportions and way of mixing of the siliconand titanium-containing components. The SiO2 core-TiO2 shell composites show high photocatalytic activity in the degradation of Rhodamine FL-BM dye (rate constant of k = 0.0813 min−1) and are much more active than precipitated TiO2 powder (k = 0.0022 min−1). The activity of the composite is determined by the calcination temperature (700–800°C), by the proportion and accessibility of the active component (TiO2), and by the presence of a dopant (P2O5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号