首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title complex, [PdCl2(C21H26N2)(C18H15P)], shows slightly distorted square‐planar coordination around the PdII metal centre. The Pd—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.028 (5) Å. The dihedral angle between the two trimethylphenyl ring planes is 36.9 (2)°.  相似文献   

2.
The title complex, [PdCl2(C19H22N2)(C18H15P)], shows slightly distorted square‐planar coordination of the palladium(II) metal center. The Pd—C bond distance between the N‐heterocyclic ligand and the metal atom is 2.008 (3) Å. The dihedral angle between the two di­methyl­phenyl ring planes is 33.17 (13)°.  相似文献   

3.
Molecules of the title compound, [PdCl(C6H4NO2S)(PPh3)2]·­C3H6O, exhibit a slight distortion from exact planarity at the Pd atom towards tetrahedral, with P—Pd—P and Cl—Pd—S angles of 174.98 (3) and 174.19 (3)°, respectively. The Pd—Cl and Pd—S bonds are, respectively, long [2.3550 (11) Å] and short [2.3020 (12) Å] for their types; the S—C bond is also very short [1.744 (4) Å]. The solvating acetone mol­ecule is linked to one of the phosphine ligands by means of a C—H?O hydrogen bond.  相似文献   

4.
Bis‐benzimidazolium salt 1 was prepared via a series of reactions using 2,2′‐diphenol as starting material. Compound 2 was afforded through the intramolecular C? C coupling reaction of 1 under the catalysis of Pd(OAc)2. The structure of 2 is characterized through X‐ray diffraction analyses, 1H NMR and 13C NMR. In 2 , two boat‐like seven‐membered rings are contained, where the C? C bond distance newly formed is 1.461(5) Å, and it is between regular C? C single bond (1.54 Å) and C?C double bond (1.34 Å). This shows that new C? C bond has partial double‐bond character. In the crystal packing of 2 , the 2D supramolecular layers are formed via C? H···F hydrogen bond.  相似文献   

5.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

6.
The title compound, C13H11NS2, contains a C[triple‐bond]C—H?N hydrogen bond to a pyridine‐type N atom, with a C?N distance of 3.305 (4) Å and an H?N distance of 2.28 Å. This is one of the shortest C—H?N hydrogen bonds known.  相似文献   

7.
The title compound, [Ni(C7H5O3)2(C10H24N4)], contains octahedral NiII in a centrosymmetric trans configuration with Ni—N distances of 2.0637 (17) and 2.0699 (16) Å and an Ni—O distance of 2.1100 (14) Å. The mol­ecules are linked by a single type of O—H?O hydrogen bond [O?O 2.618 (2) Å and O—H?O 161°] into two‐dimensional sheets; a singletype of N—H?O hydrogen bond [N?O 2.991 (2) Å and N—H?O 139°] links these sheets into a three‐dimensional framework.  相似文献   

8.
In the title compound, [Pd(C6H7N2O3)2(C2H8N2)]·5.5H2O, the Pd atom is coordinated by two 1,3‐di­methyl­barbiturate anions through a deprotonated tetrahedral carbon and the enolate oxy­gen. The Pd—N bond length of 2.078 (2) Åtrans to the C atom is shorter than the Pt—N distance of 2.098 (3) Å in the Pt analog.  相似文献   

9.
The title compound, [PdBr2(C21H13F5N2)2], crystallizes with two independent centrosymmetric conformational isomers having a square‐planar coordination at the Pd atom. The conformational isomers differ by the ligands having a cis or trans orientation of their benzyl and pentafluorobenzyl rings with respect to the benzimidazole ring plane. The benzimidazole rings are rotated with respect to the coordination plane of the metal by 79.1 (2) and 75.2 (1)° for mol­ecules A and B, respectively. The Pd—Br bond lengths are 2.4218 (8) and 2.4407 (10) Å for mol­ecules A and B, respectively, and the Pd—C bond lengths are 2.030 (8) and 2.018 (9) Å. The crystal structure contains two types of C—H⋯F and one type of C—H⋯Br intra­molecular contact, as well as C—H⋯π inter­actions.  相似文献   

10.
The adsorption of NO molecules on small Pdn (n = 1?6) clusters has been studied using first‐principles density‐functional theory. Three adsorption sites were considered: vertex (on–top), bridge, and hollow. Adsorption is strong, ranging from 2 to 3 eV. In all cases NO adsorbs in a bent configuration. Calculated shifts in N–O bond vibration frequencies (with anharmonic corrections) agree very well with available experimental data. In contrast to metallic Pd surfaces, adsorption of NO on palladium clusters causes considerable changes in geometry around adsorption site because palladium d‐orbitals rehybridize to maximize the overlap with NO orbitals (mainly the antibonding π*). Thus, the overall energetic effect of NO adsorption is the result of two competing processes: lowering of the total energy through tighter bonding with NO and rising the energy due to cluster deformation. The Pdn–NO bond creation is governed by electron transfer from Pd–d orbitals into the NO π*. As a result, the Pd cluster becomes locally demagnetized (with total magnetic moment of 1 μB located at Pd atoms not connected to NO) and the NO molecule is activated: the N–O bond length is increased and the vibration frequency is redshifted. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

11.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

12.
Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.? anion. Controlled one‐electron reduction of C28H14 with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14?C28H14)2?] ( 1 ), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C?C bond length between two C28H14.? bowls (1.560(8) Å) measured at ?143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C?C linker is confirmed by calculations. The trans‐disposition of two bowls in 1 is observed with the torsion angles around the central C?C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.? radicals confirmed that the trans‐isomer found in 1 is energetically favored.  相似文献   

13.
The acetylene complex (P(C6H5)3)2Pt(C6H5CCCH3) crystallizes in the monoclinic space group P21 with a = 14.840(4), b = 9.558(3), c = 13.553(4)Å and β = 102.74(2)°. The observed density of 1.47(2) g cm-3 agrees with the value of 1.480 g cm-3, calculated for M = 835.8 and Z = 2. Three dimensional X-ray diffraction intensity data were collected on an automatic four circle diffractometer using Mo radiation. The structure was solved by the heavy atom method and refined by Fourier and full matrix least-squares techniques on F. The final conventional agreement factor for the converged model is 0.042, using 2843 observations with I>3σ(I). The coordination geometry about the Pt atom is essentially trigonal, if the coordinated triple bond of the acetylene is assumed to occupy one coordination site. The acetylene ligand adopts a cis-bent configuration, with a mean departure from linearity of 40(1)°. The coordinated triple bond length is 1.277(25) Å. The plane of the phenyl substituent of the acetylene is inclined at an angle of 10.4° with the plane of the acetylene ligand. The mean Pt-(acetylene) distance is 2.029(15) Å. The structural results indicate that the acetylene is considerably perturbed on coordination, consistent with the observation that Δν(C≡C) is 478 cm-1.  相似文献   

14.
Formation of Organosilicon Compounds. LXI. Crystal and Molecular Structure of 1.1.3.3.5.5.7.7-Octamethyl-1.3.5.7-tetrasila-cyclooctane Si4C12H32 Octamethyl-tetrasila-cyclooctan Si4C12H32 crystallizes in the monoclinic space group C2 with a = 17.807, b = 6.121, c = 10.856 Å, β = 126.09° und 2 molecules in the unit cell. The molecule has a C2-conformation which deviates slightly from C2v symmetry. The mean Si? C bond length is 1.879 ± 0.011 Å. The mean Si? CH2 bond length is greater than the Si? CH3 bond length (1.897(15) Å and 1.861(10) Å respectively).  相似文献   

15.
The reaction of trans-[RhCl(CO)(DPM)]2 (DPM = Ph2PCH2PPh2) with dimethylacetylenedicarboxylate (DMA) and hexafluoro-2-butyne (HFB) yield the novel species [Rh2Cl2(μ-CO)(μ-Acet)(DPM)2] (Acet = DMA, HFB). The X-ray structure determination of the DMA derivative indicates that the complex has the acetylene molecule coordinated as a cis-dimetallated olefin and also contains a ketonic carbonyl ligand. The long Rh?Rh separation (3.3542(9) Å) suggests no metal—metal bond and the RhC(O)Rh angle (116.0(4)°) suggest sp2 hybridization of the carbonyl carbon atom. Similarly the geometry at the acetylene ligand and the CC distance of the coordinated acetylene moiety (1.32(1) Å) are consistent with the dimetallated olefinic formulation. This represents the first reported characterization of a ketonic carbonyl complex outside the Ni triad. These novel complexes have also been formed by the direct insertion of the acetylene molecules into the formal RhRh bond in [Rh2Cl2(μ-CO)(DPM)2].  相似文献   

16.
Rare Earth Halides Ln4X5Z. Part 1: C and/or C2 in Ln4X5Z The compounds Ln4X5Cn (Ln = La, Ce, Pr; X = Br, I and 1.0 < n < 2.0) are prepared by the reaction of LnX3, Ln metal and graphite in sealed Ta‐ampoules at temperatures 850 °C < T < 1050 °C. They crystallize in the monoclinic space group C2/m. La4I5C1.5: a = 19.849(4) Å, b = 4.1410(8) Å, c = 8.956(2) Å, β = 103.86(3)°, La4I5C2.0: a = 19.907(4) Å, b = 4.1482(8) Å, c = 8.963(2) Å, β = 104.36(3)°, Ce4Br5C1.0: a = 18.306(5) Å, b = 3.9735(6) Å, c = 8.378(2) Å, β=104.91(2)°, Ce4Br5C1.5: a = 18.996(2) Å, b = 3.9310(3) Å, c = 8.282(7) Å, β = 106.74(1)°, Pr4Br5C1.3: a = 18.467(2) Å, b = 3.911(1) Å, c = 8.258(7) Å, β = 105.25(1)° and Pr4Br5C1.5: a = 19.044(2) Å, b = 3.9368(1) Å, c = 8.254(7) Å, β = 106.48(1)°. In the crystal structure the lanthanide metals are connected to Ln6‐octahedra centered by carbon atoms or C2‐groups. The Ln6‐octahedra are condensed via opposite edges to chains and surrounded by X atoms which interconnect the chains. A part n of isolated C‐atoms is substituted by 1‐n C2‐groups. The C‐C distances range between 1.26 and 1.40Å. In the ionic formulation (Ln3+)4(X?)5(C4?)n(C2m?)1?n·e? with 0 < n < 1 and m = 2, 4, 6 (C22?, C24? C26?), there are 1 < e? < 5 electrons centered in metal‐metal bonds.  相似文献   

17.
The chiral structure of ferrocenecarbaldehyde isonicotinyl hydrazide, [Fe(η5‐C5H5)(η5‐C12H10N3O)], shows the molecule exhibits an E configuration, has a CN bond length of 1.284(4) Å and an N N bond length of 1.388(3) Å. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Er3Pd7P4 — Crystal Structure Determination and Extended Hückel Calculations Er3Pd7P4 was prepared by heating the elements (1050°C) and investigated by means of single-crystal X-ray methods. The compound crystallizes in a new structure (C2/m; a = 15.180(3) Å, b = 3.955(1) Å, c = 9.320(1) Å, β = 125,65(1)°; Z = 2) with a three-dimensional framework of Pd and P atoms and with Er atoms in the holes. The Pd atoms are surrounded tetrahedrally, trigonally or linearly by P atoms, which are coordinated by nine metal atoms in the form of a tricapped trigonal prism. Therefore the atomic arrangement of Er3Pd7P4 is related to the structures of ternary transition metal phosphides with a metal: phosphorus ratio of 2:1. Band calculations using the Extended Hückel method show strong covalent Pd? P bonds and weak bonding interactions between Pd atoms with Pd? Pd distances shorter than 2.9 Å.  相似文献   

19.
Molecules of phthal­imide [1H‐iso­indole‐1,3(2H)‐dione], C8H5NO2, are linked by N—H?O hydrogen bonds [H?O 2.02 Å, N?O 2.8781 (16) Å and N—H?O 167°] and by C—H?O hydrogen bonds [H?O 2.54 and 2.56 Å, C?O 3.3874 (18) and 3.4628 (19) Å, and C—H?O 149 and 159°] into molecular ribbons, which are pierced by three different ring motifs; there are two centrosymmetric R(8) rings, each containing a single hydrogen bond, N—H?O in one case and C—H?O in the other, and R(9) rings containing all three hydrogen bonds.  相似文献   

20.
A new mixed ligand palladium(II) complex with bidentate NS‐donor chelate, [PdCl(PPh3)L] (L: S‐allyl βN‐(benzylidene)dithiocarbazate), has been prepared and characterized using single crystal X‐ray diffraction and spectroscopic (electronic, IR, 1H NMR and 13C NMR) techniques. The shorter Pd? P bond distance, 2.255(7) Å, than the sum of the single bond radii for palladium and phosphorus (2.41 Å), showed partial double bond character. Visualizing and exploring the crystal structure using Hirshfeld surface analysis showed the presence of π··· π, N··· π, C? H··· π, Cl···H and weak C? H···S interactions as most important intermolecular interactions in the crystal lattice, which are responsible to extension of the supramolecular network of the compound and stabilization of the crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号