首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrathin TiO2 nanosheets with coexposed {001}/{101} facets have attracted considerable attention because of their high photocatalytic activity. However, the charge-separated states in the TiO2 nanosheets must be extended to further enhance their photocatalytic activity for H2 evolution. Herein, we present a successful attempt to selectively dope lanthanide ions into the {101} facets of ultrathin TiO2 nanosheets with coexposed {001}/{101} facets through a facile one-step solvothermal method. The lanthanide doping slightly extended the light-harvesting region and markedly improved the charge-separated states of the TiO2 nanosheets as evidenced by UV-vis absorption and steady-state/transient photoluminescence spectra. Upon simulated sunlight irradiation, we observed a 4.2-fold enhancement in the photocatalytic H2 evolution activity of optimal Yb3+-doped TiO2 nanosheets compared to that of their undoped counterparts. Furthermore, when Pt nanoparticles were used as cocatalysts to reduce the H2 overpotential in this system, the photocatalytic activity enhancement factor increased to 8.5. By combining these results with those of control experiments, we confirmed that the extended charge-separated states play the main role in the enhancement of the photocatalytic H2 evolution activity of lanthanide-doped TiO2 nanosheets with coexposed {001}/{101} facets.  相似文献   

2.
Titanium dioxide (TiO2) and, in particular, its anatase polymorph, is widely studied for photocatalytic H2 production. In the present work, we examine the importance of reactive facets of anatase crystallites on the photocatalytic H2 evolution from aqueous methanol solutions. For this, we synthesized anatase TiO2 nanocrystals with a large amount of either {001} facets, that is, nanosheets, or {101} facets, that is, octahedral nanocubes, and examined their photocatalytic H2 evolution and then repeated this procedure with samples where Pt co-catalyst is present on all facets. Octahedral nanocubes with abundant {101} facets produce >4 times more H2 than nanosheets enriched in {001} facets if the reaction is carried out under co-catalyst-free conditions. For samples that carry Pt co-catalyst on both {001} and {101} facets, faceting loses entirely its significance. This demonstrates that the beneficial role of faceting, namely the introduction of {101} facets that act as electron transfer mediator is relevant only for co-catalyst-free TiO2 surfaces.  相似文献   

3.
Sword‐like anatase TiO2 nanobelts exposed with 78 % clean {100} facets were synthesized and the facet‐dependent photoreactivity of anatase TiO2 was investigated. By quantitative comparison with the reference {001} facets, the {100} facets possessed about ten‐times higher active sites density than that on {001} facets, resulting in higher photoreaction efficiency. After the active sites density normalization, the {100} and {001} facets exhibited distinct wavelength‐dependent photocatalytic performance, attributed to the anisotropic electronic structures in TiO2 crystals.  相似文献   

4.
Core–shell TiO2 microspheres possess a unique structure and interesting properties, and therefore, they have received much attention. The high‐energy facets of TiO2 also are being widely studied for the high photocatalytic activities they are associated with. However, the synthesis of the core–shell structure is difficult to achieve and requires multiple‐steps and/or is expensive. Hydrofluoric acid (HF), which is highly corrosive, is usually used in the controlling high‐energy facet production. Therefore, it is still a significant challenge to develop low‐temperature, template‐free, shape‐controlled, and relative green self‐assembly routes for the formation of core–shell‐structured TiO2 microspheres with high‐energy facets. Here, we report a template‐ and hydrofluoric acid free solvothermal self‐assembly approach to synthesize core–shell TiO2 microspheres covered with high‐energy {116}‐facet‐exposed nanosheets, an approach in which 1,4‐butanediamine plays a key role in the formation of nanosheets with exposed {116} facets and the doping of nitrogen in situ. In the structure, nanoparticle aggregates and nanosheets with {116} high‐energy facets exposed act as core and shell, respectively. The photocatalytic activity for degradation of 2,4,6‐tribromophenol and Rhodamine B under visible irradiation and UV/Vis irradiation has been examined, and improved photocatalytic activity under visible light owing to the hierarchical core–shell structure, {116}‐plane‐oriented nanosheets, in situ N doping, and large surface areas has been found.  相似文献   

5.
Recently, it has been proven that directional flow of photogenerated charge carriers occurs on specific facets of TiO2 nanocrystals. Herein, we demonstrate that the photocatalytic activity of anatase TiO2 nanocrystals in both photoreduction and photooxidation processes can be enhanced by selectively depositing Pt nanoparticles on the {101} facets, which strengthens spontaneously surface‐induced separation between photogenerated electrons and holes in the photocatalysis process. An optimal ratio of the oxidative {001} facets to the reductive {101} facets exists with regard to the photocatalysis of the faceted TiO2 nanocrystals, and this is crucial for balancing the recombination and redox reaction rates of photogenerated electrons and holes. The present work might help us gain deeper insight into the relation between the specific surface of semiconductor photocatalysts and their photocatalytic activities and provides us with a new route to design photocatalysts with high photocatalytic activity.  相似文献   

6.
Zero-dimensional (0D)/two-dimensional (2D) heterojunctions have attracted great attention in photocatalysis due to their superior interfacial effects. In this work, 0D g-C3N4 quantum dots (CNQDs) were firstly used to modify {001}-faceted 2D TiO2 nanosheets by a simple solvothermal method. During the controlled growth of TiO2 nanosheets with exposed reactive {001} facets, the CNQDs can be simultaneously assembled on the surface of TiO2 nanosheets in a highly dispersive way. The 0D/2D composite containing only 0.5% of CNQDs shows the optimized solar photocatalytic activity for the degradation of rhodamine B and 4-chlorophenol. More importantly, the 0D/2D composite exhibits a better solar photocatalytic activity than the bulk g-C3N4/TiO2 nanosheets composite. This improvement can be ascribed to the close interfacial contact and strong interaction between the highly dispersed CNQDs and the TiO2 nanosheets, which could lead to efficient separation of the photogenerated electron–hole pairs, provide more catalytic active sites, and enhance the absorption of solar light. The 0D/2D composite also shows good stability for its practical applications.  相似文献   

7.
Ru/TiO2 catalysts exhibit an exceptionally high activity in the selective methanation of CO in CO2‐ and H2‐rich reformates, but suffer from continuous deactivation during reaction. This limitation can be overcome through the fabrication of highly active and non‐deactivating Ru/TiO2 catalysts by engineering the morphology of the TiO2 support. Using anatase TiO2 nanocrystals with mainly {001}, {100}, or {101} facets exposed, we show that after an initial activation period Ru/TiO2‐{100} and Ru/TiO2‐{101} are very stable, while Ru/TiO2‐{001} deactivates continuously. Employing different operando/in situ spectroscopies and ex situ characterizations, we show that differences in the catalytic stability are related to differences in the metal–support interactions (MSIs). The stronger MSIs on the defect‐rich TiO2‐{100} and TiO2‐{101} supports stabilize flat Ru nanoparticles, while on TiO2‐{001} hemispherical particles develop. The former MSIs also lead to electronic modifications of Ru surface atoms, reflected by the stronger bonding of adsorbed CO on those catalysts than on Ru/TiO2‐{001}.  相似文献   

8.
The mesoporous titanium dioxide (MTiO2) photocatalysts co‐doped with Fe and H3PW12O40 were synthesized by template method using tetrabutyl titanate (Ti(OC4H9)4), Fe(NO3)k39H2Oand H3PW12O40 as precursors and Pluronic P123 as template. The as‐prepared photocatalyst was characterized by N2 adsorption‐desorption measurements, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and UV‐vis adsorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl blue (MB) (50 mg/L) in an aqueous solution. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of ca. 10 nm with high surface area of ca. 150 m2/g. The results of MB photodecomposition showed that co‐doped mesoporous TiO2 exhibited higher photocatalytic activities than un‐doped, single‐doped mesoporous TiO2 under UV and visible light irradiation. It was shown that the co‐doped MTiO2 could be activated by visible light and could thus be used as an effective catalyst in photo‐oxidation reactions. The synergistic effect of Fe and H3PW12O40 co‐doping played an important role in improving the photocatalytic activity.  相似文献   

9.
Anatase TiO2 samples with different ratios of {101} to {001} facets were prepared with hydrothermal method and further treated under three specific calcination atmospheres (air, H2, N2). The characterization results indicate that {001} facets may generate more oxygen vacancies and more Ti3+ species than {101} facets.  相似文献   

10.
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non‐thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2, and NH3. The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2@TiO2?x), which exhibit the improved visible and near‐infrared light absorption. The types of dopants (oxygen vacancy/surface Ti3+/substituted N) in oxygen‐deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti3+ and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti3+ (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2@TiO2?x from NH3 plasma with a green color shows the highest photocatalytic activity under visible‐light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.  相似文献   

11.
Graphite-like carbon deposited single-crystal anatase TiO2 with exposed {001} facets was fabricated through a two-step solvothermal process by using glucose as carbon source. The physicochemical properties of the as-prepared samples were investigated by X-ray diffraction, Brunauer-Emmett-Teller, transmission electron microscopy, Raman, UV–vis diffuse reflectance spectra, electrochemical impedance spectroscopy and surface photovoltage spectroscopy. These results demonstrated that graphite-like carbon layers were deposited on the surface of TiO2 single-crystal nanosheets with exposed highly reactive {001} facets via the dehydration of glucose during the process of hydrothermal treatment. The loading of the graphite-like carbon layers could effectively extend the light absorption edge of the single-crystal anatase TiO2 nanosheets to visible light region and accelerate the separation of photo-generated electrons and holes, contributing an excellent visible-light driven photocatalytic performance to the graphite-like carbon deposited single-crystal anatase TiO2 nanosheets for the degradation of methyl orange.  相似文献   

12.
Recent progress on the catalytic decomposition of lignin model compounds to aromatics was reported in this review. Cesium-exchanged heteropolyacid catalysts (CsxH3.0?xPW12O40), palladium catalysts supported on cesium-exchanged heteropolyacid (Pd/CsxH3.0?xPW12O40), and palladium catalysts supported on various activated carbon aerogels (ACAs) (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/Cs2.5H0.5PW12O40/ACA-SO3H) were prepared, and they were employed for the decomposition of C–O bond in lignin to aromatics. Phenethyl phenyl ether, benzyl phenyl ether, and 4-phenoxyphenol were used as dimeric lignin model compounds representing for β-O-4, α-O-4, and 4-O-5 bonds in lignin, respectively. It was observed that CsxH3.0?xPW12O40 and Pd/CsxH3.0?xPW12O40 were highly active for the decomposition of phenethyl phenyl ether and benzyl phenyl ether to aromatics. However, these catalysts showed very low catalytic performance in the decomposition of 4-phenoxyphenol. Palladium catalysts supported on various ACAs (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/XCs2.5H0.5PW12O40/ACA-SO3H) were efficient for the decomposition of 4-phenoxyphenol to aromatics. Acidity of the catalysts played a key role in determining the catalytic performance in the decomposition of 4-phenoxyphenol to aromatics.  相似文献   

13.
Aiming at clarifying the interplay on TiO2 photoactivity between particle morphology and surface fluorination, the photocatalytic performance of anatase nanocrystals, characterized by a pseudo-spherical shape or a nanosheet structure, is investigated in both a reduction and an oxidation reaction, either in the absence or in the presence of added fluoride anions. Cr(VI) photocatalytic reduction is strongly favored by a large exposure of anatase {001} facets; however, surface fluorination leads in this case to a morphology-independent photoactivity decrease, due to the decreased adsorption of the reaction substrate. More interestingly, a beneficial synergistic effect between the platelet-like anatase morphology and TiO2 surface fluorination is clearly outlined in Rhodamine B photocatalytic degradation, possibly resulting from the intrinsic ability of fluorinated {001} anatase facets of boosting ?OH radical mediated oxidation paths, due to their larger amount of surface –OH groups, as revealed using Fourier-transform infrared spectroscopy.  相似文献   

14.
Gold nanoparticles loaded onto Keggin‐type insoluble polyoxometalates (CsxH3?xPW12O40) showed superior catalytic performances for the direct conversion of cellobiose into gluconic acid in water in the presence of O2. The selectivity of Au/CsxH3?xPW12O40 for gluconic acid was significantly higher than those of Au catalysts loaded onto typical metal oxides (e.g., SiO2, Al2O3, and TiO2), carbon nanotubes, and zeolites (H‐ZSM‐5 and HY). The acidity of polyoxometalates and the mean‐size of the Au nanoparticles were the key factors in the catalytic conversion of cellobiose into gluconic acid. The stronger acidity of polyoxometalates not only favored the conversion of cellobiose but also resulted in higher selectivity of gluconic acid by facilitating desorption and inhibiting its further degradation. On the other hand, the smaller Au nanoparticles accelerated the oxidation of glucose (an intermediate) into gluconic acid, thereby leading to increases both in the conversion of cellobiose and in the selectivity of gluconic acid. The Au/CsxH3?xPW12O40 system also catalyzed the conversion of cellulose into gluconic acid with good efficiency, but it could not be used repeatedly owing to the leaching of a H+‐rich hydrophilic moiety over long‐term hydrothermal reactions. We have demonstrated that the combination of H3PW12O40 and Au/Cs3.0PW12O40 afforded excellent yields of gluconic acid (about 85 %, 418 K, 11 h), and the deactivation of the recovered H3PW12O40–Au/Cs3.0PW12O40 catalyst was not serious during repeated use.  相似文献   

15.
Low-dimensional Bi2Fe4O9 nanosheets and microrods have been selectively prepared by a solvothermal method, from which the growth of the Bi2Fe4O9 crystals can be controlled by the variation of reaction conditions. Structure determination showed that the nanosheets are mainly exposed by {001} facets while the microrods are exposed by {110} facets. Ab- sorption spectra revealed that there are two bandgaps observed for both nanosheets (at 1.9 and 1.55 eV) and microrods (1.7 and 1.45 eV), and they both would be available for the sunlight photocatalysis e ciently due to the intensive absorption ability in a wide region. Photocatalytic investigation demonstrated that the overall photocatalytic performance of the microrods is prior to that of the nanosheets due to the variation of bandgaps and exposed facets. The present report provides a useful alternative strategy for the controlling growth of nanostructures and/or microcrystals besides the present demonstration of the Bi2Fe4O9 crystals with diflerent bandgaps and facets that would be able to tune the corresponding photocatalytic ability selectively.  相似文献   

16.
Controllable growth of anatase TiO2 crystals with exposed high reactive crystal facets has aroused great attention in the fields of science and technology due to their unique structure-dependent properties. Recently, much effort has been paid to synthesize anatase TiO2 crystals with exposed high reactive {001} facets. Herein, we review the recent progress in synthesizing {001} facets dominated anatase TiO2 crystals with different morphologies by various synthetic methods. Furthermore, our review is mainly focused on the formation/etching mechanisms of {001} facets dominated anatase TiO2 crystals based on our and other studies. The extensive application potentials of the anatase TiO2 crystals with exposed {001} facets have been summarized in this review such as photocatalysis, photoelectrocatalysis, solar energy conversion, lithium ion battery, and hydrogen generation. Based on the current studies, we give some perspectives on the research topic. We believe that this comprehensive review on anatase TiO2 crystals with high reactive {001} facets can further promote the relative research in this field.  相似文献   

17.
In this work, TiO2/CdS nanocomposites with co-exposed {101}/[111]-facets (NH4F-TiO2/CdS), {101}/{010} facets (FMA-TiO2/CdS), and {101}/{010}/[111]-facets (HF-TiO2/CdS and Urea-TiO2/CdS) were successfully synthesized through a one-pot solvothermal method by using [Ti4O9]2− colloidal solution containing CdS crystals as the precursor. The crystal structure, morphology, specific surface area, pore size distribution, separation, and recombination of photogenerated electrons/holes of the TiO2/CdS nanocomposites were characterized. The photocatalytic activity and cycling performance of the TiO2/CdS nanocomposites were also investigated. The results showed that as-prepared FMA-TiO2/CdS with co-exposed {101}/{010} facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of methyl orange (MO), and its degradation efficiency was 88.4%. The rate constants of FMA-TiO2/CdS was 0.0167 min−1, which was 55.7, 4.0, 3.7, 3.5, 3.3, and 1.9 times of No catalyst, CdS, HF-TiO2/CdS, NH4F-TiO2/CdS, CM-TiO2, Urea-TiO2/CdS, respectively. The highest photocatalytic activity of FMA-TiO2/CdS could be attributed to the synergistic effects of the largest surface energy, co-exposed {101}/{010} facets, the lowest photoluminescence intensity, lower charge-transfer resistance, and a higher charge-transfer efficiency.  相似文献   

18.
In the work presented here, well‐dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic‐liquid precursors by using 1‐n‐butyl‐3‐methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic‐liquid precursors. By adjusting the molar ratios of Fe(NO3)3 ? 9H2O to [Bmim][H2PO4] as well as the composition of ionic‐liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic‐liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton‐like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible‐light irradiation. Our measurements indicate that the photocatalytic activity of as‐prepared Fenton‐like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton‐like catalysts with different morphologies, and suggest a promising new strategy for crystal‐facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton‐like process.  相似文献   

19.
We have systematically investigated the electronic structures and activation capacities of BiOBr {001} facets with different atomic terminations by means of DFT methods. Our calculations reveal that oxygen vacancies (OVs) give a significant boost in band edges of the O‐terminated BiOBr {001} facets, and excess electrons induced by OVs could exceed the reduction potentials of high‐energy N2 intermediates. Interestingly, the Bi‐terminated BiOBr {001} facets may be good candidates for photocatalytic nitrogen fixation due to the stronger activation ability of N2 molecules comparing with O‐terminated BiOBr {001} facets with OVs. Moreover, the Bi‐terminated BiOBr {001} facets may tend to yield NH3 instead of N2H4.  相似文献   

20.
TiO2 nanosheets mainly exposed (001) facet were prepared through a hydrothermal process with HF as the morphology-directing agent. Ru and RuO2 species were loaded by photo-deposition methods to prepare the photocatalysts. The structural features of the catalysts were characterized by X-ray di raction, transmission electron microscopy, inductively cou-pled plasma atomic emission spectrum, and H2 Temperature-programmed reduction. The photocatalytic property was studied by the O2 evolution from water oxidation, which was examined with respect to the in uences of Ru contents as well as the oxidation and reduction treatments, suggesting the charge separation effect of the Ru species co-catalysts on di erent facets of TiO2 nanosheets. In contrast to Ru/TiO2 and RuO2/TiO2 with the single deposited co-catalyst, the optimized catalyst 0.5%Ru-1.0%RuO2/TiO2 with dual co-catalysts achieved a much improved catalytic performance, in terms of the synergetic effect of dual co-catalysts and the enhanced charge separation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号