首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of naphthalene donor compounds that possess an adamantanamine binding moiety and an (OCH2CH2)n (nn1, 2, 3, 4, 6, 8) spacer were synthesized. The fluorescence quenching between these donor substrates and mono-6-O-p-nitrobenzoyl-β-cyclodextrin (pNBCD) and mono-6-O-m-nitrobenzoyl-β-cyclodextrin(mNBCD) was studied in detail. It was found that very efficient fluorescence quenching could occur in these supramolecular systems. This quenching was attributed to the photoinduced electron transfer inside the supramolecular assembly between the naphthalene donors and cyclodextrin acceptors. Detailed Stern-Volmer constants were measured and they were partitioned into dynamic Stern-Volmer quenching constants and static binding constants. It was demonstrated that the binding constants between all the naphthalene compounds and cyclodextrins are the same as they possess the same binding site, i.e., adamantanamine.  相似文献   

2.
A novel water soluble ditopic guest, the quaternary ammonium salt of N,N'-bis(ferrocenylmethylene)-diaminobutane (1), and a known water soluble ditopic host, benzenetetracarboxylic dianhydride bridged bis(β-cyclodextrin)s (2), have been synthesized and characterized. ^1H NMR spectra and cyclic voltammogram (CV) studies revealed the host-guest interactions between them in aqueous solution. The supramolecular interaction also exists in solid state as confirmed by the studies of the solid samples, which were obtained by frozen-drying the solution sampies, using FTIR spectroscopy and differential scanning calorimetry (DSC) techniques. TEM measurement demonstrated that wire-shaped supramolecular aggregates exist in the aqueous solution of the two compounds. The lengths of the aggregates could reach micrometers.  相似文献   

3.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

4.
A new β‐cyclodextrin‐based receptor that showed allosteric binding behavior towards capsaicin in aqueous solution was prepared. By NMR titration and nonlinear regression, we obtained binding constants, which increased more than fivefold when an effector (Zn2+) was bound to a central 2,2′‐bipyridine that acts as the allosteric center.  相似文献   

5.
Novel functional polymers utilizing specific host/guest interactions were designed by introducing α‐CD host molecules into poly(ε‐lysine) chains as side groups. An interesting phase separation was observed as a result of the inclusion complexation between the polymeric host and 3‐(trimethylsilyl)propionic acid as a model guest in aqueous media. This water‐soluble polymeric host would be useful for various applications, particularly drug delivery, due to its biodegradability, low toxicity, and unique functionality represented as a complexation‐induced phase separation.  相似文献   

6.
Summary: Host‐guest complexes of α‐cyclodextrin (α‐CD) and methylated β‐cyclodextrin (Me‐β‐CD) with diacrylates and dimethacrylates of butan‐1,4‐diol and hexan‐1,6‐diol at varying stoichiometries were studied. The complexes were analyzed by means of 1H NMR, two‐dimensional ROESY spectroscopy and Job's curves, which clearly revealed the discriminating influence of the two hosts towards complex formation. The corresponding polymers were obtained using a redox initiator system in water. Thermal analysis and IR measurements of the polymers provided evidence for the existence of a polyrotaxane architecture.

Proposed structure of the cross‐linked polymers obtained by the redox polymerization of the Me‐β‐CD complexed monomers.  相似文献   


7.
The photophysical properties of two polyrotaxanes ( PFBTh?PSβCD and PFBTh?PMeβCD ) composed of fluorene and bithiophene encapsulated into permodified β‐cyclodextrin cavities have been investigated and compared with those of the reference PFBTh . Rotaxane formation results in improvements of the thermal stability, solubility in common organic solvents, as well as better film forming ability combined with a high transparency. As expected PFBTh and its encapsulated forms absorb at wavelengths beyond 510 nm, and time‐resolved photoluminescence (PL) in solution shows a well‐define vibronic structures with a predominance of the 0‐0 transitions and an energy difference of 0.16 eV. The fluorescence lifetimes follow a monoexponential decay with a value τ = 630 ± 30 ps. Atomic force microscopy, AFM, indicated a tendency of polyrotaxanes to organize into fibers. The advancing contact angles indicated higher surface hydrophobicity and lower surface free‐energy values for polyrotaxanes compared with their unthreaded analogues. The device based on PFBTh?PSβCD: PCBM in a 1/1 w/w ratio under simulated AM 1.5G illumination at 100 mW cm?2 exhibited improved photovoltaic parameters of cells, resulted in high Voc (0.68 V), Jsc (1.65 mA cm?2), FF (31.6%), and PCE (0.35) values, compared with PFBTh or PFBTh?PMeβCD , respectively. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 460–471  相似文献   

8.
Two inclusion complexes of β‐cyclodextrin‐7‐hydroxycoumarin ( 1 ) and β‐cyclodextrin‐4‐hydroxycoumarin ( 2 ) were prepared and their crystal structures were investigated by single crystal X‐ray crystallography under cryogenic condition. Both structures consist of stacks of face‐to‐face cyclodextrin dimers arranged in brickwork‐like pattern along the crystallographic a‐axis. For complex 1 , each of the two dimeric β‐cyclodextrins includes one 7‐hydroxycoumarin molecule that penetrates deeply into the cyclodextrin dimer and locates its lactonering at the center of the dimer cavity. For complex 2 , each cyclodextrin dimer accommodates three 4‐hydroxycoumarin molecules. One of them is sandwiched between two units of the cyclodextrin dimer, the other two are shallowly included in the cavities of the dimeric cyclodextrins respectively and protrude their lactone rings from the primary end of the cyclodextrin. The substituent effects of guest molecules on inclusion geometry of various coumarin molecules in β‐cyclodextrin were examined.  相似文献   

9.
The electrochemiluminescence (ECL) aptasensor was prepared for the detection of Mucin 1 based on its specific recognition by aptamer immobilized on multi‐functionalized graphene oxide nanocomposite, which was prepared with N‐(4‐aminobutyl)‐N‐ethylisoluminol (ABEI) and aptamer chemically bound to the surface of magnetic GO (nanoFe3O4@GO). ABEI and aptamer acted as the electrochemiluminophore and the capture device for Mucin 1 respectively. NanoFe3O4@GO brought multi‐functionalized graphene oxide nanocomposite attracted on the surface of magnetic glass carbon electrode through magnetism, enabled all the ABEI immobilized electrochemically active due to its good conductivity and thus then facilitated the sensitive detection of Mucin 1. In addition, the ECL aptasensor can be prepared through a one‐step process. Under optimal conditions, the ECL intensity of the aptasensor decreased proportionally to the logarithmic concentrations of Mucin 1 in the range of 0.005–1000 ng mL?1. This aptasensor displays good specificity, stability, reproducibility and application. This method has a large potential because such a multi‐functionalized graphene oxide nanocomposite also may be applied to other ECL‐based aptasensors.  相似文献   

10.
Complexations between three oridonin derivatives and β‐cyclodextrin (βCD) were studied by nuclear magnetic resonance (NMR) method. Job's plots for complexes were depicted by 1H NMR spectra chemical shifts, which proved the 1:1 stoichiometry inclusion complex formation between each derivative and βCD. Two‐dimensional rotating frame overhauser effect spectroscopy (2D ROESY) support the above conclusion and also proved that ring A of each oridonin derivative deeply enters into hydrophobic cavity from the wider rim and the other parts are outside the cavity. Apparent formation constants (Ka) of complexes between three oridonin derivatives and two CDs are calculated according to Scott's equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A hydroxy‐functionalized bipyridine ligand was polymerized with ε‐caprolactone utilizing the controlled ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. The resulting poly(ε‐caprolactone)‐containing bipyridine was characterized by 1H NMR and IR spectroscopy, and gel permeation chromatography, as well as matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, revealing the successful incorporation of the bipyridine ligand into the polymer chain. Coordination to iridium(III) and ruthenium(II) precursor complexes yielded two macroligand complexes, which were characterized by NMR, gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight MS, cyclic voltammetry, and differential scanning calorimetry. In addition, both photophysical and electrochemical properties of the metal‐containing polymers proved the formation of a trisruthenium(II) and a trisiridium(III) polypyridyl species, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4153–4160, 2004  相似文献   

12.
Supramolecular inclusion complexes (ICs) involving polyhedral oligomeric silsesquioxane (POSS) capped poly(?‐caprolactone) (PCL) and α‐cyclodextrin (α‐CD) were investigated. POSS‐terminated PCLs with various molecular weights were prepared via the ring‐opening polymerization of ?‐caprolactone (CL) with 3‐hydroxypropylheptaphenyl POSS as an initiator. Because of the presence of the bulky silsesquioxane terminal group, the inclusion complexation between α‐CD and the POSS‐capped PCL was carried out only with a single end of a PCL chain threading inside the cavity of α‐CD, which allowed the evaluation of the effect of the POSS terminal groups on the efficiency of the inclusion complexation. The X‐ray diffraction results indicated that the organic–inorganic ICs had a channel‐type crystalline structure. The stoichiometry of the organic–inorganic ICs was quite dependent on the molecular weights of the POSS‐capped PCLs. With moderate molecular weights of the POSS‐capped PCLs (e.g., Mn =3860 or 9880), the stoichiometry was 1:1 mol/mol (CL unit/α‐CD), which was close to the literature value based on the inclusion complexation of α‐CD with normal linear PCL chains with comparable molecular weights. When the PCL chains were shorter (e.g., for the POSS‐capped PCL of Mn = 1720 or 2490), the efficiency of the inclusion complexation decreased. The decreased efficiency of the inclusion complexation could be attributed to the lower mobility of the bulky POSS group, which restricted the motion of the PCL chain attached to the silsesquioxane cage. This effect was pronounced with the decreasing length of the PCL chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1247–1259, 2007  相似文献   

13.
The preparation of novel cationic β‐cyclodextrin polymers (CPβCDs) and its complexes with butylparaben and triclosan were reported in this paper. FT‐IR and two‐dimensional (2D) 1H–1H gradient correlated spectroscopy (gCOSY) NMR spectra confirmed that the antibiotics could be included inside the lipophilic cavities of CPβCDs. The water solubility of the antibiotics was improved significantly after inclusion with CPβCDs. The results also suggest that it was easier for butylparaben, which had relatively small molecular size, to form the complexes with CPβCDs than triclosan. Due to the targeting effect after the inclusion with cationic CPβCDs, the anti‐microbial activity of butylparaben was also enhanced substantially. However, similar improvement was not obvious for triclosan.

  相似文献   


14.
Cyclodextrins are used in many drug formulations since their cavities provide microenvironments where drug molecules can enter and form inclusion complexes for controlled drug delivery. Supercritical carbon dioxide (scCO2) is an alternative to organic solvents and a very attractive medium for the preparation of these inclusion complexes. The potential ability of triacetyl‐β‐cyclodextrin (TA‐β‐CD) to form inclusion complexes in addition to its high miscibility in liquid and scCO2 could offer a chance for an economical and environmental friendly chemical processing. In this work, high‐pressure NMR studies were performed in order to obtain information on the molecular structure and dynamics of TA‐β‐CD in scCO2 at 313.15 K and 20 MPa and its ability to form inclusion complexes under these conditions was studied. The influence of scCO2 on a number of NMR spectral parameters, such as chemical shifts, spin‐spin coupling constants, nuclear Overhauser effect (NOE) and spin‐lattice relaxation (T1) has been studied. We unequivocally show for the first time structural changes of TA‐β‐CD in scCO2, like acetyl chain orientation and overall shape distortions that can affect its inclusion capability in this medium. The possibility of cavity self‐closure is discussed and the results of two inclusion studies that support cavity self‐closure, with the angiotensin‐converting enzyme inhibitor, captopril, and the nonsteroid anti‐inflammatory drug, flufenamic acid, are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
《Electrophoresis》2018,39(8):1079-1085
Cyclodextrins (CD) form inclusion complexes with different “guests” owing to the fact that the shape of the CD molecule is a truncated cone with a hydrophobic cavity. The adducts of CD with metal complexes remain scantily explored. In this study, the stability constants of the adducts between succinate copper(II) complexes and β‐CD was determined using capillary electrophoresis. The β‐CD concentration in background electrolytes (BGE) was found to influence on the effective electrophoretic mobility of the copper(II) complexes in succinate BGEs. It was shown that succinic acid and its anions and copper(II) ions did not form a significant amount of the inclusion complexes with β‐CD and the mobility change was caused by the adduct formation between succinate copper(II) complexes and β‐CD. The stability constants of these adducts were determined at 25°С and ionic strength of 0.100 M: log β(CuL22−/β‐CD) = 1.76 ± 0.06, log β(CuL0/β‐CD) = 0.98 ± 0.09. The [CuHL]+ and [CuHL2] species were found to do not form adducts with β‐CD.  相似文献   

16.
This paper reports the enzymatic polymerization of the inclusion complex 2,4‐dihydroxyphenyl‐4′‐hydroxybenzylketone/2,6‐dimethyl‐β‐cyclodextrin by horseradish peroxidase (HRP) in aqueous media. The structure of the complex was determined by means of NOESY‐NMR and crystallographic analysis (indicating an orthorhombic structure). The enzymatic polymerization of the uncomplexed 2,4‐dihydroxyphenyl‐4′‐hydroxybenzylketone yields oligomers with molecular weights up to in organic‐aqueous media, but because of its poor solubility in aqueous systems, no polymerization is observed if water is used as solvent. An increase of the availability of the ketone in solution is achieved by complexing it with random‐methylated β‐cyclodextrin in water. We found that the use of methylated β‐cyclodextrin in equimolar concentration to the monomer increases the polymerization yield and the average molecular weight. The polymers formed were analyzed by GPC and ATR‐FTIR techniques.

Representation from X‐ray diffraction analysis of the 2,6‐dimethyl‐β‐cyclodextrin/2,4‐dihydroxyphenyl‐4′‐hydroxybenzylketone host‐guest complex ( 3 ).  相似文献   


17.
Electrochemiluminescence (ECL) of tris(2,2′‐bipyridine)ruthenium, Ru(bpy)32+ in the presence of various co‐reactants, such as tripropylamine (TPA), oxalate ion (C2O42?), ascorbic acid (H2A) and dehydroascorbic acid (DHA), were investigated under ultrasound irradiation. In sono‐ECL experiments, an indium‐thin‐oxide (ITO) was used as working electrode, and a titanium tipped sonic horn probe (diameter 2 mm) which operated at a frequency of 20 kHz was set in the front of the ITO electrode. Under the ultrasound irradiation, ECL signals were found to be significantly enhanced when TPA and C2O42? were used as co‐reactants, only slightly enhanced in Ru(bpy)32+/DHA system, but total quenched in Ru(bpy)32+/H2A system. The difference of Ru(bpy)32+ ECL behaviors for various co‐reactant could to be due to the different kinetics of catalytic reactions associated in ECL schemes. ECL quenching effect observed in Ru(bpy)32+/H2A system was suggested to be due to electron transfer (ET) route between the excited state *Ru(bpy)32+ and ascorbate anion HA? diffused from the bulk solution, where the diffusional HA? species served as electron donor. The effect becomes more pronounced upon sonication because the effective collision frequency between *Ru(bpy)32+ and HA? would be significantly increased by the enhanced mass transport effect of ultrasound.  相似文献   

18.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

19.
20.
Methylated β‐cyclodextrin (Me‐β‐CD) was used to complex a free‐radical photoinitiator, 2‐hydroxy‐2‐methyl‐1‐phenylpropan‐1‐one ( 1 ), yielding the water‐soluble 1 : 1 host/guest complex 1 a . The structure of complex 1 a was verified by means of IR, UV/vis and 1H NMR spectroscopy. The influence of Me‐β‐CD as the host on the photopolymerization kinetics of N‐isopropylacrylamide was studied. Compared to the photopolymerization carried out under nearly identical conditions but without cyclodextrin, an increase in the polymerization rate was registered in the presence of complex 1 a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号