首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.  相似文献   

2.
We investigate the itinerant ferromagnetism in a dipolar Fermi atomic system with the anisotropic spin−orbit coupling (SOC), which is traditionally explored with isotropic contact interaction. We first study the ferromagnetism transition boundaries and the properties of the ground states through the density and spin-flip distribution in momentum space, and we find that both the anisotropy and the magnitude of the SOC play an important role in this process. We propose a helpful scheme and a quantum control method which can be applied to conquering the difficulties of previous experimental observation of itinerant ferromagnetism. Our further study reveals that exotic Fermi surfaces and an abnormal phase region can exist in this system by controlling the anisotropy of SOC, which can provide constructive suggestions for the research and the application of a dipolar Fermi gas. Furthermore, we also calculate the ferromagnetism transition temperature and novel distributions in momentum space at finite temperature beyond the ground states from the perspective of experiment.  相似文献   

3.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

4.
The (1 0 0) SrTiO3 substrate has emerged as the oxide substrate of choice for the deposition of a wide variety of materials. The substrate's unavoidable miscut leads to a step-terrace morphology when heated to high temperatures. This morphological transition is accompanied by an atomic scale repositioning of the uppermost terrace atoms, the nature of which is strongly dependent on the substrate temperature and ambient atmosphere used. Here, we report the deposition of CdTe films on the as-received and reconstructed surfaces of (1 0 0) SrTiO3. The as-received substrate gives rise to a [1 1 1] CdTe film with four equally distributed in-plane grain orientations. The surface reconstruction, on the other hand, gives rise to an unprecedented reorientation of the film's grain structure. For this case, a [2 1 1] CdTe film emerges having twelve unevenly distributed in-plane orientations. We attribute the film's grain structure to an atomic scale surface reconstruction, with the anisotropic distribution of grain-types arising from a preferential formation due to the step edges.  相似文献   

5.
GaN nanowires have been successfully synthesized on Si(1 1 1) substrates by magnetron sputtering through ammoniating Ga2O3/Cr thin films at 950 °C. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR spectrophotometer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (TEM), and photoluminescence (PL) spectrum were carried out to characterize the microstructure, morphology, and optical properties of GaN samples. The results demonstrate that the nanowires are single-crystal GaN with hexagonal wurtzite structure and high-quality crystalline, have the size of 30-80 nm in diameter and several tens of microns in length with good emission properties. The growth direction of GaN nanowires is perpendicular to the fringe of (1 0 1) plane. The growth mechanism of GaN nanowires is also discussed in detail.  相似文献   

6.
FePt and FePt/Cr films were epitaxially grown on MgO (2 0 0) substrates at 350 °C by DC magnetron sputtering. The structural properties and epitaxial relationship are investigated by high-resolution X-ray diffraction (XRD). The XRD spectra revealed that both FePt and FePt/Cr films had a (0 0 1) preferred orientation. However, FePt films with Cr underlayers had a larger a and a smaller c than those of the samples without Cr underlayers. Furthermore, the FePt (0 0 1) peak characterized by its rocking curves became less pronounced when the Cr underlayer was applied. The off-spectra from the MgO (1 1 1), Cr (1 0 1) and FePt (1 1 1) demonstrated that the epitaxial relationship between the FePt film, Cr underlayer and MgO substrate was confirmed to be FePt (0 0 1)<100> || Cr (1 0 0)<1 1 0> || MgO (1 0 0)<0 0 1>. The domain size and Ms decreased when the Cr underlayer was applied due to the diffusion of Cr and the existence of the initial layer between Cr and FePt layers.  相似文献   

7.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands.  相似文献   

8.
We report on the effects of substrate, ambient oxygen pressure and deposition time on the crystal structure, and morphology of Sm0.55Nd0.45NiO3 solid solution nanostructured films synthesized by pulsed-laser deposition. In each film the structure was found to be consistent with a perovskite structure with preferential planes growth and reveals a strong orientation along the orthorhombic (2 1 0) plane of the perovskite subcell for the film deposited on NdGaO3 where highly crystalline films were obtained within 15 min deposition time with a low surface roughness of 8.79 nm. Similar structure is observed on Si (1 0 0) substrate only at O2 pressure of 0.4 mbar. The surface morphology of the different samples shows a net dense film structure with several droplets population. The nano-scaled droplets are in general spherical in shape; a detailed analysis indicates that the laser ablation of this nickelate family is governed to a certain extent by a heat transfer phenomenon.  相似文献   

9.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

10.
Nd2Hf2O7 (NHO) thin films have been epitaxially grown by pulsed laser deposition (PLD) on Ge(1 1 1) substrates. In situ reflection high-energy electron diffraction (RHEED) evolution of the (1 1 1)-oriented NHO during the deposition has been investigated and shows that the epilayer has a twin-free character with type-B stacking. Interfacial structure of NHO/Ge has been examined by high-resolution transmission electron microscopy (HRTEM). The results indicate a highly crystalline film with a very thin interface, and the orientation relationship between NHO and Ge can be denoted as (1 1 1)NHO//(1 1 1)Ge and . Finally, twin-free epitaxial growth of NHO with type-B orientation displays temperature dependence and the type-B epitaxy is favored at high temperature.  相似文献   

11.
Fe films with strong preferred orientation were prepared on Al2O3 (0 0 0 1) substrates by a new two-step method using low-pressure metal-organic chemical vapor deposition (LP-MOCVD) method. X-ray diffraction (XRD) and a vibrating sample magnetometer were employed to characterize the structure and magnetic properties of the Fe films before and after thermal reduction, which was performed in hydrogen flow at 723–1023 K. XRD patterns indicate that the films changed into α-Fe (bcc) mono-phase from a mixture of α-Fe2O3 and/or Fe (bcc).  相似文献   

12.
The structure of ultrathin Mo films on SrTiO3(1 0 0) was studied by in situ reflection high-energy electron diffraction (RHEED). A different structure was observed for films less than 20 Å thick than for thicker films. These films were epitaxial and had a metastable structure. Thicker films had the dimensions of equilibrium bcc Mo(1 1 0). Relaxation processes transformed the metastable Mo into bcc Mo, resulting in the following orientation relationships between Mo and SrTiO3: (1 1 0)[0 0 1]bcc Mo ∥ (1 0 0)[0 0 1]SrTiO3 and (1 1 0)[1 1 1]bcc Mo ∥ (1 0 0)[0 1 1]SrTiO3. The formation of such specific orientations is related to transformations via the Bain and Needle Path, respectively.  相似文献   

13.
Highly-oriented CaCu3Ti4O12 (CCTO) thin films deposited directly on SrTiO3 (1 0 0) substrates have been developed successfully using a chemical solution coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were employed to characterize the structure and the morphology. It was observed that the CCTO thin films had the 1 μm × 1 μm domain-like microstructure that consists of compact grains of about 0.1 μm in size. The cross sectional SEM image shows that the CCTO grains grow regularly close to the clear interface between the CCTO film and the SrTiO3 substrate. The result was discussed in terms of lattice mismatch between CCTO and SrTiO3.  相似文献   

14.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

15.
A series of metallic LaNiO3 (LNO) thin films were deposited on MgO (1 0 0) substrates by pulsed laser deposition (PLD) under the oxygen pressure of 20 Pa at different substrate temperatures from 450 to 750 °C. X-ray diffraction (XRD) was used to characterize the crystal structure of LNO films. θ-2θ scans of XRD indicate that LNO film deposited at a substrate temperature of 700 °C has a high orientation of (l l 0). At other substrate temperatures, the LNO films have mixed phases of (l l 0) and (l 0 0). Furthermore, pole figure measurements show that LNO thin films, with the bicrystalline structure, were epitaxially deposited on MgO (1 0 0) substrates in the mode of LNO (1 1 0)//MgO (1 0 0) at 700 °C. Reflection high-energy electric diffraction (RHEED) and atomic force microscopy (AFM) were also performed to investigate the microstructure of LNO films with the high (l l 0) orientation. RHEED patterns clearly confirm this epitaxial relationship. An atomically smooth surface of LNO films at 700 °C was obtained. In addition, bicrystalline epitaxial LNO films, fabricated at 700 °C, present a excellent conductivity with a lower electrical resistivity of 300 μ Ω cm. Thus, the obtained results indicate that bicystalline epitaxial LNO films could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.  相似文献   

16.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

17.
Growth of sexithiophene films on both ordered and disordered TiO2(1 1 0) surfaces has been investigated by angle-resolved ultraviolet photoemission spectroscopy, atomic force microscopy, and X-ray diffraction including grazing-incidence characterization. The order (or disorder) of the TiO2(1 1 0)-1 × 1 surface has been observed to profoundly influence the electronic, morphological, and structural properties of the 6T films: the band alignment, which determines the injection efficiency of contacts, has been considerably modified by 0.6 eV, and a morphology with either needle-like or dendritic-like islands has been obtained. The changes in the 6T film properties are associated with the orientational modifications of sexithiophene molecules within the films, either flat-lying or upright standing, 6T(0 1 0) or 6T(1 0 0) crystallites, respectively. The growth of different crystallite orientations is argued to be controlled by the kinetics mediated by the (dis)order of the TiO2(1 1 0) surface rather than exclusively by chemical interaction between the molecule and the substrate.  相似文献   

18.
280 nm-thick Ni films were deposited on SiO2/Si(1 0 0) and MgO(0 0 1) substrates at 300 K, 513 K and 663 K by a direct current magnetron sputtering system with the oblique target. The films deposited at 300 K mainly have a [1 1 0] crystalline orientation in the film growth direction. The [1 1 0]-orientation weakens and the [1 1 1]- and [1 0 0]-orientations enhance with increasing deposition temperature. The lattice constant of the Ni films is smaller than that of the Ni bulk, except for the film grown on MgO(0 0 1) at 663 K. Furthermore, as the deposition temperature increases, the lattice constant of the films grown on the SiO2/Si(1 0 0) decreases whereas that of the films grown on the MgO(0 0 1) increases. The films deposited at 300 K and 513 K grow with columnar grains perpendicular to the substrate. For the films deposited at 663 K, however, the columnar grain structure is destroyed, i.e., an about 50 nm-thick layer consisting of granular grains is formed at the interface between the film and the substrate and then large grains grow on the layer. The Ni films deposited at 300 K consist of thin columnar grains and have many voids at the grain boundaries. The grains become thick and the voids decrease with increasing deposition temperature. The resistivity of the film decreases and the saturation magnetization increases with increasing deposition temperature.  相似文献   

19.
The growth of epitaxial InBixAsySb(1−xy) layers on highly lattice mis-matched semi-insulating GaAs substrates has been successfully achieved via the traditional liquid phase epitaxy. Orientation and single crystalline nature of the film have been confirmed by X-ray diffraction. Scanning electron micrograph shows abrupt interface at micrometer resolution. Surface composition of Bi(x) and As(y) in the InBixAsySb(1−xy) film was measured using energy dispersive X-ray analysis and found to be 2.5 and 10.5 at.%, respectively, and was further confirmed with X-ray photoelectron spectroscopy. Variation of the composition with depth of the film was studied by removing the layers with low current (20 μA) Ar+ etching. It was observed that with successive Ar+ etching, In/Sb ratio remained the same, while the As/Sb and Bi/Sb ratios changed slightly with etching time. However after about 5 min etching the As/Sb and Bi/Sb ratios reached constant values. The room temperature band gap of InBi0.025As0.105Sb0.870 was found to be in the range of 0.113–0.120 eV. The measured values of mobility and carrier density at room temperature are 3.1×104 cm2 V−1 s−1 and 8.07×1016 cm−3, respectively.  相似文献   

20.
Magnesium films of various thicknesses were first deposited on silicon (1 1 1) substrates by magnetron sputtering method and then annealed in annealing furnace filled with argon gas. The effects of the magnesium film thickness and the annealing temperature on the formation of Mg2Si films were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Mg2Si thin films thus obtained were found to be polycrystalline and the Mg2Si (2 2 0) orientation is preferred regardless of the magnesium film thickness and annealing temperature. XRD results indicate that high quality magnesium silicide films are produced if the magnesium/silicon samples are annealed at 400 °C for 5 h. Otherwise, the synthesized films annealed at annealing temperatures lower than 350 °C or higher than 450 °C contain magnesium crystallites or magnesium oxide. SEM images have revealed that microstructure grains in the polycrystalline films are about 1-5 μm in dimensions, and the texture of the Mg2Si films becomes denser and more homogeneous as the thickness of the magnesium film increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号