首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴琼  刘俊  董前民  刘阳  梁培  舒海波 《物理学报》2014,63(6):67101-067101
基于密度泛函理论的第一性原理计算,系统研究了硫化锡(SnS)晶体、纳米单层及多层的结构稳定性、电子结构和光学性质.结果表明:由于相对弱的层间范德瓦尔斯力作用,SnS单层纳米片可以像石墨烯等二维材料一样从块体中剥离出来;受制于量子尺寸效应和层间相互作用的影响,SnS的结构稳定性随层数减少而逐渐减弱,其带隙随层数减少而逐渐增大;由于材料的本征激发和吸收取决于电子结构,因此改变SnS材料的层数可以到达调控其光学性质的目的;SnS块体和纳米结构的主要光学吸收峰起源于Sn-5s,5p和S-2p轨道之间的电子跃迁;并且从块体到单层纳米结构,SnS的光学吸收峰出现明显的蓝移.本文的研究将有助于SnS材料在太阳能电池领域的应用.  相似文献   

2.
D. M. Hoat 《哲学杂志》2019,99(6):736-751
The structural, electronic, optical properties of GaS in bulk and monolayer forms have been studied by means of full-potential linearised augmented plane wave calculations within framework of the density functional theory. Generalised gradient approximation and Tran–Blaha modified Becke–Johnson exchange potential (mBJ) were employed for the treatment of exchange-correlation effect in calculations. Our calculated lattice parameters are in good agreement with previous theoretical results and available experimental data. The negative formation enthalpy and cohesive energy indicate that both bulk and monolayer GaS can be synthesised and stabilised experimentally. Our electronic results show that the band gap of GaS monolayer is higher than that of bulk counterpart and strong hybridisation between electronic states of constituent atoms is observed in both cases. The optical properties such as reflectivity, absorption coefficient, refractive index and optical conductivity were derived from calculated complex dielectric function for wide energy range up to 35?eV. Finally, the thermoelectric properties of GaS bulk and monolayer also were calculated using semi-classical Boltzmann theory within the constant relaxation time approximation for investigating their applicability in thermoelectric devices.  相似文献   

3.
Da-Hua Ren 《中国物理 B》2022,31(4):47102-047102
Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we study the structural, electronic, and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with a suitable indirect band gap of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by an external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced than those of the GaS monolayer and SnS2 monolayer in the visible light region. Our results suggest that the GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in the visible light region.  相似文献   

4.
朱秋香  庞华  李发伸 《中国物理 B》2009,18(7):2953-2960
The magnetism, the magnetocrystalline anisotropy and the optical properties of the monolayer and atomic chain of 4d transition-metal Ru are investigated by using the full-potential linearized-augmented-plane-wave method in a generalized gradient approximation. The magnetic moments are 1.039~μ _B/atom and 1.130~μB/atom for the monolayer and atomic chain, respectively. Both systems have large magnetocrystalline anisotropy energy (MAE). The magnetic easy axis is normal to the monolayer and perpendicular to the chain axis in the atomic chain. The optical properties of the two low-dimensional Ru systems are investigated by calculating the complex optical conductivity tensor. Both systems exhibit anisotropy in photoconductivity, especially for the atomic chain. The physical origins of MAE and photoconductivity are studied based on electronic structures. It is found that the changes in crystal field caused by different symmetry-breaking mechanisms in the two low-dimensional Ru systems result in MAE through spin--orbit coupling, while the anisotropy in photoconductivity mainly comes from the crystallographic anisotropy.  相似文献   

5.
The structural, electronic and optical properties of HgAl2Se4 are investigated using the full potential linear augmented plane wave method based on density functional theory. The calculated structural parameters using LDA are in excellent agreement with the available experimental result. The obtained energy band gap (2.24 eV) using EV-GGA approximation is in excellent agreement with experimental data (2.20 eV). Variation in the energy band gap as a function of the unit cell lattice parameter has been studied. The optical properties show a considerable anisotropy, which makes this compound very useful for various linear–nonlinear optical devices.  相似文献   

6.
二维硅烯的商业用途通常受到其零带隙的抑制,限制了其在纳米电子和光电器件中的应用.利用基于密度泛函理论的第一性原理计算,单层硅烯的带隙通过卤原子的化学官能化被成功打开了,并综合分析了卤化对单层硅烯的结构,电子和光学性质的影响.研究结果表明卤化使结构变得扭曲,但保持了良好的稳定性.通过HSE06泛函,全功能化赋予硅烯1.390至2.123 eV的直接带隙.键合机理分析表明,卤原子与主体硅原子之间的键合主要是离子键.最后,光学性质计算表明,I-Si-I单层在光子频率为10.9 eV时达到最大光吸收,吸收值为122000 cm-1,使其成为设计新型纳米电子和光电器件的有希望的候选材料.  相似文献   

7.
《Physics letters. A》2020,384(25):126614
Two dimensional crystalline materials have attracted much attentions due to the establishment of heterostructure that can adjust their electrical and optical properties, and have potential applications in lasers, light-emitting diodes, solar cells and high mobility transistors. And the interface engineering is an effective route to tune structural and electrical properties in semiconductor heterostructures. In this study, the electronic structure, charge transport and optical properties of monolayer caesium bromide and black phosphorus (CsBr/BP) heterostructure are calculated by the first principle based on density functional theory (DFT). It was found that the characteristics of electronic band structures of the monolayer CsBr and BP remain in the heterostructure, and the effective mass and carrier mobility are highly anisotropic. When the heterostructure is uniaxially stretched, the mobility of electron is greater than that of the hole, while the biaxial stretching is just the opposite, the mobility of hole is greater than that of the electron. In addition, compared with the CsBr monolayer, the light absorption of the heterostructure is significantly enhanced, especially in the infrared, indicating that the CsBr/BP heterostructure can be well applied to photovoltaic devices in the future.  相似文献   

8.
Quantum confinement and electronic properties of silicon nanowires   总被引:2,自引:0,他引:2  
We investigate the structural, electronic, and optical properties of hydrogen-passivated silicon nanowires along [110] and [111] directions with diameter d up to 4.2 nm from first principles. The size and orientation dependence of the band gap is investigated and the local-density gap is corrected with the GW approximation. Quantum confinement becomes significant for d<2.2 nm, where the dielectric function exhibits strong anisotropy and new low-energy absorption peaks start to appear in the imaginary part of the dielectric function for polarization along the wire axis.  相似文献   

9.
黑磷晶体的单原子层结构被定义为磷烯,它具有独特的褶皱形态和一些区别于其它二维晶体材料的特性,如可调控的直接带隙,高开关比,高载流子迁移率以及优异的光学饱和吸收特性等,使其在纳米电子和纳米光学领域具有潜在应用价值.此外,蓝磷烯被理论计算所预测,它是黑磷烯的一种同素异形体,具有许多类似黑磷烯的优异特性.本文主要介绍了当前两种构型磷烯的研究进展,包括黑/蓝磷烯各自的晶体结构、制备方法、物理特性和稳定性;最后对目前磷烯研究中存在的问题与挑战提出了一些见解和展望.  相似文献   

10.
刘廷禹  张启仁  庄松林 《光学学报》2005,25(10):361-1364
利用完全势缀加平面波局域密度泛函近似,计算了完整的白钨矿结构和斜钨矿结构的钨酸铅(PbWO4)晶体的电子结构;模拟计算了复数折射率、介电函数及吸收光谱的偏振特性。分析了各个吸收光谱的峰值所对应的可能的电子跃迁以及钨酸铅晶体的偏振特性。钨酸铅晶体的光学性质的各向异性反映了钨酸铅晶体的品格结构的各向异性。计算结果表明:斜钨矿结构的钨酸铅晶体的光学性质与白钨矿结构的钨酸铅的光学性质之间存在明显的差异。这说明钨酸铅晶体是一种结构敏感的晶体;计算结果为研究钨酸铅晶体的光学性质与晶体结构之间的关系提供理论基础。  相似文献   

11.
We have investigated the structural parameters, electronic structure and optical properties of orthorhombic SrZrO3 using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). Our calculated structural parameters are in good agreement with the previous theoretical and experimental data. Band structure, density of states and chemical bonding have been systematically studied. Furthermore, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, loss function and optical conductivity are calculated, which show an optical anisotropy in the components of polarization directions (100), (010) and (001).  相似文献   

12.
The electronic structures of a MoS2 monolayer are investigated with the all-electron first principle calculations based on the density functional theory (DFT) and the spin-orbital couplings (SOCs). Our results show that the monolayer MoS2 is a direct band gap semiconductor with a band gap of 1.8 eV. The SOCs and d-electrons in Mo play a very significant role in deciding its electronic and optical properties. Moreover, electronic elementary excitations are studied theoretically within the diagrammatic self-consistent field theory. Under random phase approximation, it shows that two branches of plasmon modes can be achieved via the conduction-band transitions due to the SOCs, which are different from the plasmons in a two-dimensional electron gas and graphene owing to the quasi-linear energy dispersion in single-layer MoS2. Moreover, the strong optical absorption up to 105 cm-1 and two optical absorption edges I and II can be observed. This study is relevant to the applications of monolayer MoS2 as an advanced photoelectronic device.  相似文献   

13.
The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.  相似文献   

14.
High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of −0.19 and −0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born–Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (~20 000 cm2·V−1·s−1), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.  相似文献   

15.
Based on the density functional theory, electronic and optical properties of a monolayer scandium nitride structure have been studied under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change the band gap of this structure with different rates. Also, optical absorption spectrum peaks experience an obvious red and blue shifts with the exerting of tensile and compressive strains, respectively. Our results express that ScN monolayer can be the promising candidate for the future nano-base electrical and optical devices.  相似文献   

16.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

17.
Wang-Li Tao  Yi Mu  Guang-Fu Ji 《哲学杂志》2019,99(8):1025-1040
Motivated by the synthesis of a Janus monolayer, the new PtSSe transition-metal dichalcogenide (TMD) have attracted remarkable attention due to their characteristic properties. In this work, we calculated the electronic structure, optical properties, and the thermal conductivity of the PtSSe monolayers, and performed a detailed comparison with other TMDs (monolayer PtS2 and PtSe2) using first-principles calculations. The calculated band gaps of the PtS2, PtSSe, and PtSe2 monolayers were 1.76, 1.38, and 1.21?eV, respectively, which are in good agreement with experimental data. At the same time, we observed a larger spin-orbit splitting in the electronic structure of PtSSe monolayers. The optical properties were also calculated and a significant red shift was observed from the PtS2 to PtSSe to PtSe2 monolayers. The lattice thermal conductivity of the PtSSe monolayer at room temperature (36.19?W/mK) is significantly lower than that of the PtS2 monolayer (54.25?W/mK) and higher than that of the PtSe2 monolayer (18.07?W/mK). Our results show that the PtSSe monolayer breaks structural symmetry and has the same ability to reduce the thermal conductivity as MoSSe and ZrSSe monolayers due to the shorter group velocity and the lower converged phonon scattering rate. These results may stimulate further studies on the electronic structure, optical properties, and thermal conductivity of the PtSSe monolayer in both experimental synthesis and theoretical efforts.  相似文献   

18.
The optical properties of rutile and anatase titanium dioxide (TiO2) are calculated from the imaginary part of the dielectric function using pseudopotential density functional method within its generalized gradient approximation (GGA) and a scissors approximation. The fundamental absorption edges calculated for the unit cell of both rutile and anatase are consistent with experimentally reported results of single crystal rutile and anatase TiO2 and with previous theoretical calculations. A significant optical anisotropy is observed in the anatase structure which holds promise for investigating the band gap modification with better visible-light response and provides a reliable foundation for addressing the effect of impurities on the fundamental absorption edge/band gap of anatase TiO2. Further calculations on the electronic structure and the optical properties of C-, N-, and S-doped anatase TiO2 are performed. The results are analyzed and discussed in terms of optical anisotropy and scissors approximations.  相似文献   

19.
We present a theoretical study of the electronic structure and optical properties of free-standing GaN and AlN nanowires. We have implemented the empirical tight-binding method, with an orbital basis sp(3), that includes the spin-orbit interaction. The passivation of the dangling bonds at the free surfaces is also studied, together with the effects on the electronic structure of the nanowire. For both GaN and AlN nanowires, we have found a remarkable anisotropy of the optical absorption when the light-polarization changes, showing in the case of GaN a dependence on the nanowire size.  相似文献   

20.
Regulation of optical properties and electronic structure of two-dimensional layered ReS_2 materials has attracted much attention due to their potential in electronic devices.However,the identification of structure transformation of monolayer ReS_2 induced by strain is greatly lacking.In this work,the Raman spectra of monolayer ReS_2 with external strain are determined theoretically based on the density function theory.Due to the lower structural symmetry,deformation induced by external strain can only regulate the Raman mode intensity but cannot lead to Raman mode shifts.Our calculations suggest that structural deformation induced by external strain can be identified by Raman scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号