首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study critical behaviors of the reduced fidelity susceptibility for two neighboring sites in the onedimensional transverse field Ising model. It is found that the divergent behaviors of the susceptibility take the form of square of logarithm, in contrast with the global ground-state fidelity susceptibility which is power divergence. In order to perform a scaling analysis, we take the square root of the susceptibility and determine the scaling exponent analytically and the result is further confirmed by numerical calculations.  相似文献   

2.
Yan-Wei Dai 《中国物理 B》2022,31(7):70502-070502
We investigate quantum phase transitions for q-state quantum Potts models (q=2,3,4) on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with a simplified updating scheme. We extend the universal order parameter to a two-dimensional lattice system, which allows us to explore quantum phase transitions with symmetry-broken order for any translation-invariant quantum lattice system of the symmetry group G. The universal order parameter is zero in the symmetric phase, and it ranges from zero to unity in the symmetry-broken phase. The ground-state fidelity per lattice site is computed, and a pinch point is identified on the fidelity surface near the critical point. The results offer another example highlighting the connection between (i) critical points for a quantum many-body system undergoing a quantum phase-transition and (ii) pinch points on a fidelity surface. In addition, we discuss three quantum coherence measures: the quantum Jensen-Shannon divergence, the relative entropy of coherence, and the l1 norm of coherence, which are singular at the critical point, thereby identifying quantum phase transitions.  相似文献   

3.
Tianyu Li  Yong-Sheng Zhang  Wei Yi 《中国物理快报》2021,(3):1-6,中插1-中插3
We construct a two-dimensional, discrete-time quantum walk, exhibiting non-Hermitian skin effects under openboundary conditions. As a confirmation of the non-Hermitian bulk-boundary correspondence, we show that the emergence of topological edge states is consistent with the Floquet winding number, calculated using a non-Bloch band theory, invoking time-dependent generalized Brillouin zones. Further, the non-Bloch topological invariants associated with quasienergy bands are captured by a non-Hermitian local Chern marker in real space, defined via the local biorthogonal eigenwave functions of a non-unitary Floquet operator. Our work aims to stimulate further studies of non-Hermitian Floquet topological phases where skin effects play a key role.  相似文献   

4.
We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e., the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point. We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.  相似文献   

5.
We study the polaronic crossover properties in the two-site Holstein model by the quantum entanglement and the fidelity. Based on the exact wave function obtained by the extended bosonic coherent states, the linear entropy and the fidelity are evaluated. The maximum of the entanglement between the electron and surrounding phonons is observed in a small polaron regime. A smooth change (no singularity) of the ground-state fidelity as well as its susceptibility appears in the intermediate coupling regime, which confirms a crossover rather than a phase transition in this system by this quantum information tool. In addition, the results for some quantities in the weak-coupling and strong-coupling limit are given analytically.  相似文献   

6.
The ground-state magnetic properties of the spin-2 transverse Ising model with a longitudinal crystal field are studied within the framework of mean-field theory (MFT) and effective-field theory (EFT), respectively. The phase diagrams and magnetization curves are examined in detail. It is found that the system exhibits a tricritical behavior in the ground-state phase diagrams. Some interesting phenomena have been found, especially the first-order phase transition from one ordered phase to the other ordered phase, which is due to the high spin. The spin correlation has important effect on the magnetic properties of the system. We also find that the ground-state phase diagrams of the spin-2 transverse Ising model are very different from those of the spin-3/2 transverse Ising model.  相似文献   

7.
We study quantum fidelity, the overlap between two ground states of a many-body system, focusing on the thermodynamic regime. We show how a drop in fidelity near a critical point encodes universal information about a quantum phase transition. Our general scaling results are illustrated in the quantum Ising chain for which a remarkably simple expression for fidelity is found.  相似文献   

8.
对于无限大尺寸两腿自旋1/2的XXZ自旋梯子模型,通过运用基于随机行走的张量网络(TN)算法数值模拟出基态波函数,首次尝试研究自旋梯子模型的约化保真度、普适序参量、纠缠熵等物理观测量,并系统研究基态保真度的三维挤点与二维分叉、约化保真度的分叉、局域序参量、普适序参量、纠缠熵和量子相变之间存在的关联关系.基于张量网络表示的算法在任意随机选择初始状态时,可以得到两腿XXZ量子自旋梯子系统简并的对称破缺基态波函数,该基态波函数是由于Z2对称破缺引起的.本文期望所提供的方法可为进一步研究凝聚态物质中热力学极限下的强关联电子量子晶格自旋梯子系统的量子相变和量子临界现象提供一种更有效的强大的工具.  相似文献   

9.
The fidelity and entanglement entropy in an antiferromagnetic-ferromagnetic alternating Heisenberg chain are investigated by using the method of density-matrix renormalization-group. The effects of anisotropy on fidelity and entanglement entropy are investigated. The relations between fidelity, entanglement entropy and quantum phase transition are analyzed. It is found that the quantum phase transition point can be well characterized by both the ground-state entropy and fidelity for large system.  相似文献   

10.
Based on the approach of biorthogonal basis, we carry out the quasinormal modes (QNMs) expansions for a class of open systems described by the wave equation with outgoing wave boundary conditions. For such a non-Hermitian system, the eigenfunction perturbation expansions and Green function method, which are based on the orthogonal eigenvectors of the Hermitian Hamiltonian for the dosed quantum system, can be generalized in terms of the biorthogonal basis, the two sets of eigenfunctions of H and its adjointness H . The time-independent perturbation theory for the complex frequencies can be also developed.  相似文献   

11.
张勇  刘丹  龙桂鲁 《中国物理》2007,16(2):324-328
The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.  相似文献   

12.
田立君  朱长青  张宏标  秦立国 《中国物理 B》2011,20(4):40302-040302
Motivated by recent developments in quantum fidelity and fidelity susceptibility,we study relations among Lie algebra,fidelity susceptibility and quantum phase transition for a two-state system and the Lipkin-Meshkov-Glick model. We obtain the fidelity susceptibilities for SU(2) and SU(1,1) algebraic structure models. From this relation,the validity of the fidelity susceptibility to signal for the quantum phase transition is also verified in these two systems. At the same time,we obtain the geometric phases in these two systems by calculating the fidelity susceptibility. In addition,the new method of calculating fidelity susceptibility is used to explore the two-dimensional XXZ model and the Bose-Einstein condensate (BEC).  相似文献   

13.
For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.  相似文献   

14.
In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed.  相似文献   

15.
We show that the reduced fidelity susceptibility in the family of one-dimensional XY model obeys scaling behavior in the vicinity of quantum critical points both analytically and numerically. The logarithmic divergence behavior suggests that the reduced fidelity susceptibility can act as an indicator of quantum phase transition.  相似文献   

16.
Fidelity and fidelity susceptibility are introduced to investigate the topological superconductors with end Majorana fermions. A general formalism is established to calculate the fidelity and fidelity susceptibility by solving Bogoliubov–de Gennes equations. Both clean and disordered systems are studied within this formalism, and the results show that the fidelity susceptibility serves as a valid indicator for the topological quantum phase transition which signals the appearance of Majorana fermions. Our study provides a useful tool to investigate the topological quantum phase transition in superconductors, which is helpful to find topological phases in various systems.  相似文献   

17.
The ground-state degeneracy and magnetocaloric effect in the spin-1/2 Ising–Heisenberg double-tetrahedral chain are exactly investigated. It is demonstrated that the zero-temperature phase diagram involves two classical and two quantum chiral phases with distinct degrees of the macroscopic degeneracy. Different macroscopic degeneracies observed in the latter phases and at individual ground-state phase transitions are confirmed by multiple-peak dependencies of the specific heat and entropy on the magnetic field. The cooling capability of the model is well illustrated by the magnetic-field variations of the isothermal entropy change, temperature isotherms and the magnetic Grüneisen parameter.  相似文献   

18.
We consider the ground-state properties of the s = 1/2 Ising chain in a transverse field which varies regularly along the chain having a period of alternation 2. Such a model, similarly to its uniform counterpart, exhibits quantum phase transitions. However, the number and the position of the quantum phase transition points depend on the strength of transverse field modulation. The behaviour in the vicinity of the critical field in most cases remains the same as for the uniform chain (i.e. belongs to the square-lattice Ising model universality class). However, a new critical behaviour may also arise. We report the results for critical exponents obtained partially analytically and partially numerically for very long chains consisting of a few thousand sites.  相似文献   

19.
陈西浩  王秀娟 《物理学报》2018,67(19):190301-190301
应用矩阵乘积态表示的无限虚时间演化块算法,研究了扩展的量子罗盘模型.为了深入研究该模型的长程拓扑序和量子相变,基于奇数键和偶数键,引入了奇数弦关联和偶数弦关联,计算了保真度、奇数弦关联、偶数弦关联、奇数弦关联饱和性与序参量.弦关联表现出三种截然不同的行为:衰减为零、单调饱和与振荡饱和.基于弦关联的以上特征,给出了量子罗盘模型的基态序参量相图.在临界区,局域磁化强度和单调奇弦序参量的临界指数β=1/8表明:相变的普适类是Ising类型.此外,保真度探测到的相变点、连续性与非连续性和序参量的结果一致.  相似文献   

20.
Arun K. Pati 《Pramana》2009,73(3):485-498
Entanglement is one of the key features of quantum world that has no classical counterpart. This arises due to the linear superposition principle and the tensor product structure of the Hilbert space when we deal with multiparticle systems. In this paper, we will introduce the notion of entanglement for quantum systems that are governed by non-Hermitian yet PT-symmetric Hamiltonians. We will show that maximally entangled states in usual quantum theory behave like non-maximally entangled states in PT-symmetric quantum theory. Furthermore, we will show how to create entanglement between two PT qubits using non-Hermitian Hamiltonians and discuss the entangling capability of such interaction Hamiltonians that are non-Hermitian in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号