首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The products of the reaction between CN(-) and four different diruthenium complexes of the type Ru(2)(L)(4)Cl where L = 2-CH(3)ap (2-(2-methylanilino)pyridinate anion), ap (2-anilinopyridinate anion), 2-Fap (2-(2-fluoroanilino)pyridinate anion), or 2,4,6-F(3)ap (2-(2,4,6-trifluoroanilino)pyridinate anion) are reported. Mono- and/or dicyano adducts of the type Ru(2)(L)(4)(CN) and Ru(2)(L)(4)(CN)(2) are found exclusively as reaction products when either the 2-CH(3)ap or the ap derivative is reacted with CN(-), but diruthenium complexes with formulations of the type Ru(2)(F(x)ap)(3)[mu-(o-NC)F(x-1)ap](mu-CN) or Ru(2)(F(x)ap)(4)(mu-CN)(2) (x = 1 or 3) are also generated when Ru(2)(Fap)(4)Cl or Ru(2)(F(3)ap)(4)Cl is reacted with CN(-). More specifically, four products formulated as Ru(2)(Fap)(4)(CN), Ru(2)(Fap)(4)(CN)(2), Ru(2)(Fap)(3)[mu-(o-NC)ap](mu-CN), and Ru(2)(Fap)(4)(mu-CN)(2) can be isolated from a reaction of CN(-) with the Fap derivative, but the exact type and yield of these compounds depend on the temperature at which the experiment is carried out. In the case of the F(3)ap derivative, the only diruthenium complex isolated from the reaction mixture has the formulation Ru(2)(F(3)ap)(3)[mu-(o-NC)F(2)ap](mu-CN) and this compound has structural, electrochemical, and spectroscopic properties quite similar to that of previously characterized Ru(2)(F(5)ap)[mu-(o-NC)F(4)ap](mu-CN). Both the mono- and dicyano derivatives synthesized in this study possess the isomer type of their parent chloro complexes. The Ru-Ru bond lengths of Ru(2)(ap)(4)(CN) and Ru(2)(2-CH(3)ap)(4)(CN) are longer than those of Ru(2)(ap)(4)Cl and Ru(2)(CH(3)ap)(4)Cl, respectively, and this is accounted for by the strong sigma-donor properties of the CN(-) ligand as compared to Cl(-). The Ru-C bonds in Ru(2)(ap)(4)(CN)(2) are significantly shorter than those in Ru(2)(ap)(4)(CN), thus revealing a greatly enhanced Ru-CN interaction in the dicyano adduct, a result which is also indicated by the fact that nu(CN) in Ru(2)(ap)(4)(CN)(2) is 50 cm(-1) higher than nu(CN) in Ru(2)(ap)(4)(CN). Although both (4,0) Ru(2)(ap)(4)(CN)(2) and (3,1) Ru(2)(Fap)(4)(CN)(2) possess the same formulation, there are clear structural differences between the two complexes and this can be explained by the fact that the two cyano derivatives possess a different binding symmetry of the bridging ligands. Each mono- and dicyano adduct was electrochemically investigated in CH(2)Cl(2) containing TBAP as supporting electrolyte. Ru(2)(ap)(4)(CN), Ru(2)(CH(3)ap)(4)(CN), and Ru(2)(Fap)(4)(CN) undergo one reduction and two oxidations. The two dicyano adducts of the ap and Fap derivatives are characterized by two reductions and one oxidation. The potentials of these processes are all negatively shifted in potential by 400-720 mV with respect to half-wave potentials for the same redox couples of the monocyano derivatives, with the exact value depending upon the specific redox reaction.  相似文献   

2.
Six Ru2(6+) derivatives of the form Ru2(L)4(C[triple bond]CC6H5)(2), where L = 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, or 2,4,6-F(3)ap, are synthesized and characterized as to their electrochemical, spectroscopic, and/or structural properties. These compounds are synthesized from a reaction between LiC[triple bond]CC6H5 and Ru2(L)4Cl. Two of the investigated complexes exist in a (4,0) isomeric form while four adopt a (3,1) geometric conformation. These two series of geometric isomers are compared with previously characterized (4,0) Ru2(ap)4(C[triple bond]CC6H5)(2), (4,0) Ru2(F5ap)4(C[triple bond]CC6H5)(2), and (3,1) Ru2(F5ap)4(C[triple bond]CC6H5)(2). The overall data on the nine compounds thus provide an opportunity to systematically examine how the electrochemical and structural properties of these Ru2(6+) complexes vary with respect to isomer type and electronic properties of the bridging ligands.  相似文献   

3.
Eleven different Ru(2)(4+) and Ru(2)(3+) derivatives are characterized by thin-layer FTIR and UV-visible spectroelectrochemistry under a CO atmosphere. These compounds, which were in-situ electrogenerated from substituted anilinopyridine complexes with a Ru(2)(5+) core, are represented as Ru(2)(L)(4)Cl where L = 2-CH(3)ap, ap, 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, 3,5-F(2)ap, 2,4,6-F(3)ap, or F(5)ap. The Ru(2)(5+) complexes do not axially bind CO while mono- and bis-CO axial adducts are formed for the Ru(2)(4+) and Ru(2)(3+) derivatives, respectively. Six of the eleven investigated compounds exist in a (4,0) isomeric form while five adopt a (3,1) geometric conformation. These two series of compounds thus provide a large enough number of derivatives to examine trends and differences in the spectroscopic data of the two types of isomers in their lower Ru(2)(4+) and Ru(2)(3+) oxidation states. UV-visible spectra of the Ru(2)(4+) derivatives and IR spectra of the Ru(2)(3+) complexes under CO are both isomer dependent, thus suggesting that these data can be used to reliably predict the isomeric form, i.e., (3,1) or (4,0), of diruthenium complexes containing four unsymmetrical substituted anilinopyridinate bridging ligands; this was confirmed by X-ray crystallographic data for seven compounds whose structures were available.  相似文献   

4.
Reported in this contribution are the preparation and characterization of a series of Ru(2)(DMBA)(4) (DMBA = N,N'-dimethylbenzamidinate) bis(alkynyl) compounds, trans-Ru(2)(DMBA)(4)(X-gem-DEE)(2) [gem-DEE = σ-geminal-diethynylethene; X = H (1), Si(i)Pr(3) (2), Fc (3); 4-C(6)H(4)NO(2) (4), and 4-C(6)H(4)NMe(2) (5)]. Compounds 1-5 were characterized by spectroscopic and voltammetric techniques as well as the single-crystal X-ray diffraction studies of 2 and 3. Both the single-crystal structural data of compounds 2 and 3 and the spectroscopic/voltammetric data indicate that the gem-DEE ligands are similar to simple acetylides in their impact on the molecular and electronic structures of the Ru(2)(DMBA)(4) core. Furthermore, density functional theory calculations revealed more extensive π delocalization in aryl-donor-substituted gem-DEEs and that the hole-transfer mechanism will likely dominate the charge delocalization in Ru(2)-gem-DEE-based wires.  相似文献   

5.
A one-pot reaction of a cationic diruthenium complex, [Ru(2)(II,III)(O(2)CCH(3))(4)(THF)(2)](BF(4)), with arylcarboxylic acids, ArCO(2)H, (PhCO(2)H = benzoic acid, NapCO(2)H = 1-naphthoic acid, AntCO(2)H = 9-anthracenecarboxylic acid) in NDMA (NDMA = N,N-dimethylaniline) has led to isolation of neutral paddlewheel-type diruthenium complexes, [Ru(II)(2)(O(2)CAr)(4)(THF)(2)] (Ar = Ph (1), Nap (2), Ant (3)). Paramagnetic variable temperature (VT) (1)H NMR studies and GC-MS studies show that the reaction consists of two steps: a one-electron reduction of the Ru(2) core by NDMA and a simple carboxylate-exchange reaction. All compounds 1-3 were structurally characterized by X-ray crystallography. While the structural features of the Ru(2) core are very similar in all the compounds, the dihedral angles between the carboxylate plane and the aromatic ring are larger with the expanding of aryl groups from phenyl to anthracene. The effect of pi-pi stacking leads to the formation of a 1-D chain structure in compound 3, whereas compounds 1 and 2 are fully isolated from each other. The electrochemical measurements show that the quasireversible one-electron oxidation step is observed at +0.06, +0.09, and +0.17 V (vs Ag/Ag(+)) for 1-3, respectively, assigned to the Ru(II)(2)/Ru(II,III)(2) redox couple. These potentials are found to demonstrate a linear relationship with the substituent constants for aryl compounds,.  相似文献   

6.
Reactions of Ru(2)(O(2)CMe)(4)Cl with two formamidines, HDXyl(2,6)F = N,N'-di(2,6-xylyl)formamidine and HDAniF = N,N'-di(p-anisyl)formamidine, have been investigated with the idea of synthesizing compounds with a mixed set of ligands having different labilities to be used as precursors of paramagnetic, higher-order assemblies. Depending on the formamidine and the reaction conditions, several Ru(2)(5+) compounds of the type Ru(2)(O(2)CMe)(4)(-)(n)(DArF)(n)Cl (DArF = anion of an N,N'-diarylformamidine) have been isolated. With the bulky formamidine HXyl(2,6)F, the compounds Ru(2)(O(2)CMe)(3)(DXyl(2,6)F)Cl (1) and trans-Ru(2)(O(2)CMe)(2)(DXyl(2,6)F)(2)Cl (2) were obtained. From reactions with appropriate amounts of HDAniF in THF and in the presence of NEt(3) and LiCl, complexes of the general type Ru(2)(O(2)CMe)(4)(-)(n)(DArF)(n)Cl (n = 1-4) were selectively obtained. For n = 2, only the cis isomer was obtained. The choice of solvent in reactions of Ru(2)(O(2)CMe)(4)Cl and HDAniF is of great importance. Toluene favored the formation of the fully substituted Ru(2)(5+) complex Ru(2)(DAniF)(4)Cl (3), whereas MeOH resulted in a disproportionation reaction that gave the edge-sharing bioctahedral Ru(3+)Ru(3+) complex [trans-Ru(2)(mu-OMe)(2)(mu-O(2)CMe)(2)(HDAniF)(4)]Cl(2) (6) and the Ru(2)(4+) complex Ru(2)(DAniF)(4) (7). Complexes 6 and 7 with an Ru(2)(6+) and Ru(2)(4+) core, respectively, are diamagnetic, whereas all Ru(2)(5+) complexes are paramagnetic with sigma(2)pi(4)delta(2)(pi*delta*)(3) ground-state electronic configurations and large zero-field splitting contributions. All compounds show rich and complex electrochemical behavior.  相似文献   

7.
Factors affecting the electrochemical and spectroelectrochemical properties of diruthenium(III,II) complexes containing four unsymmetrical bridging ligands are reported for seven related compounds which were isolated in one or two of the four possible isomeric forms. The investigated compounds are represented as Ru(2)(2-CH(3)ap)(4)Cl, Ru(2)(2,5-F(2)ap)(4)Cl, Ru(2)(2,6-F(2)ap)(4)Cl, and Ru(2)(2,4,6-F(3)ap)(4)Cl where 2-CH(3)ap, 2,5-F(2)ap, 2,6-F(2)ap, and 2,4,6-F(3)ap are, respectively, the 2-(2-methylanilino)pyridinate anion, the 2-(2,5-difluoroanilino)pyridinate anion, the 2-(2,6-difluoroanilino)pyridinate anion, and the 2-(2,4,6-trifluoroanilino)pyridinate anion. Ru(2)(2-CH(3)ap)(4)Cl and Ru(2)(2,5-F(2)ap)(4)Cl exist only in a (4,0) conformation while Ru(2)(2,4,6-F(3)ap)(4)Cl is present in both (3,1) and (4,0) isomeric forms. Ru(2)(2,6-F(2)ap)(4)Cl also exists in two isomeric forms, but only the (3,1) isomer was generated in sufficient quantities to be isolated and structurally characterized. This series of seven closely related metal-metal bonded complexes thus provides the first possibility to systematically examine how differences in position and number of the electron-donating or electron-withdrawing groups on the anionic bridging ligands might be related to the electronic properties and structural features of the compound as well as the type and number of geometric isomers which are formed. Each diruthenium derivative undergoes three one-electron transfers in CH(2)Cl(2) containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). The first reduction and first oxidation products were characterized by thin-layer UV-vis spectroelectrochemistry, and the spectroscopic data, along with E(1/2) values, were then related via linear free energy relationships to the type of isomer and/or position of the electron-donating or electron-withdrawing substituents on the anionic ap bridge. The electrogenerated Ru(2)(6+) and Ru(2)(4+) forms of the compounds were assigned on the basis of electrochemical and UV-vis spectroscopic data as having the electronic configuration sigma(2)pi(4)delta(2)pi(2) and sigma(2)pi(4)delta(2)pi(3)delta, respectively, and seemed to be independent of the isomer type ((3,1) or (4,0)). The spectral and electrochemical properties of the compounds both vary substantially as a function of the isomer type, but this is not reflected in the structural features of the compounds which are within the range of what is seen for other Ru(2)(5+) species described in the literature. The Ru-Ru bond lengths of the four structurally characterized (4,0) isomers of the ap complexes range from 2.275 to 2.296 A while those of the three structurally characterized (3,1) isomers of ap derivatives fall in the range 2.284-2.286 A and show no significant difference among the three compounds. The Ru-Cl bond lengths of the (3,1) isomers do not vary significantly with the bridging ligand and range from 2.458 to 2.471 A whereas those of the (4,0) isomers range from 2.437 to 2.487 A and show larger variations among the compounds. The Ru-Ru-Cl bond angle is virtually independent of the bridging ligand in the case of the (4,0) isomers but decreases with the electron-withdrawing effect of the substituent in the case of the (3,1) isomers.  相似文献   

8.
Chen WZ  Ren T 《Inorganic chemistry》2003,42(26):8847-8852
Metathesis reactions between Ru(2)(DMBA)(4)Cl(2) (DMBA = N,N'-dimethylbenzamidinate) and MX (M = Na and K) yielded bis-adduct derivatives Ru(2)(DMBA)(4)X(2) (X = CN (1), N(3) (2), N(CN)(2) (3)). Metathesis reactions between Ru(2)(DMBA)(4)(NO(3))(2) and KI resulted in Ru(2)(DMBA)(4)I(2) (4). Compound 1 is diamagnetic, while compounds 2-4 are paramagnetic (S = 1). Both compounds 1 and 2 undergo two reversible one-electron processes, an oxidation and a reduction, while compound 3 features a quasireversible reduction. Single-crystal X-ray diffraction studies revealed that the Ru-Ru bond lengths are 2.4508(9), 2.3166(7), 2.304[1], and 2.328(1) A for compounds 1-4, respectively. Structural and electrochemical data clearly indicate that the axial ligands impart a significant influence on the electronic structures of diruthenium species.  相似文献   

9.
A series of dendronized-Ru(2) compounds were prepared using the Cu(I)-catalyzed 1,3-dipolar cycloaddition (click reaction) between the terminal azides of azidopoly(benzyl ether) dendrons ([D(n)]-N(3), n = 0-3) and Ru(2) units bearing one or two terminal ethynes, Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-4-C(2)H)(m)Cl with m = 1 and 2, and D(3,5-Cl(2)Ph)F and DMBA-4-C(2)H as N,N'-bis(3,5-dichloro-phenyl)formamidinate and N,N'-dimethyl-4-ethynylbenzamidinate, respectively. The resultant Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)Cl compounds were further functionalized by the axial ligand displacement of Cl by -C(2)Ph to yield new compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)(C(2)Ph)(2) (where m = 1 and 2; n = 0 and 1). All Ru(2) compounds reported herein were analyzed via mass spectrometry, voltammetry, and UV-visible and fluorescence spectroscopy. Density-functional theory (DFT) calculations were performed on a model compound to gain more insight into the molecular orbital energy levels possibly associated with the photophysical data obtained and presented herein.  相似文献   

10.
The ligand substitution reaction of Ru(2)(O(2)CCH(3))(4)Cl with 5-substituted N-(2-pyridyl)-2-oxy-5-R-benzylaminate (R = H, Me, Cl, Br, NO(2)) resulted in a family of anionic diruthenium species of [Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) that were isolated by using Na(+)- or K(+)-18-crown-6-ether as the countercation: [A(18-crown-6)(S)(x)()][Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)] (A = Na(+), K(+); S = solvent; R = H, 1; Me, 2; Cl, 3; Br, 4; NO(2), 5). All compounds were structurally characterized by X-ray crystallography. The structural features of the anionic parts are very similar among the compounds: two acetate and two R-salpy(2)(-) ligands are, respectively, located around the Ru(2) unit in a trans fashion, where the R-salpy(2)(-) ligand acts as a tridentate ligand having both bridging and chelating characters to form the M-M bridging/axial-chelating mode. Compounds 1 and 5 with K(+)-18-crown-6-ether have one-dimensional chain structures, the K(+)-18-crown-6-ether interacting with phenolate oxygens of the [Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) unit to form a repeating unit, [.K.O-Ru-Ru-O.], whereas 2-4 are discrete. Cyclic voltammetry and differential pulse voltammetry revealed systematic redox activities based on the dimetal center and the substituted ligand, obeying the Hammett law with the reaction constants per substituent, rho, for the redox processes being 127 mV for Ru(2)(5+)/Ru(2)(4+), 185 mV for Ru(2)(6+)/Ru(2)(5+), 92 mV for Ru(2)(7+)/Ru(2)(6+), and 179 mV for R-salpy(-)/R-salpy(2)(-). For 3, the singly oxidized and reduced species, Ru(2)(6+) and Ru(2)(4+), respectively, generated by bulk controlled-potential electrolyses were finally monitored by spectroscopy. The singly oxidized species can also be slowly generated by air oxidation.  相似文献   

11.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

12.
Four new helical oligoproline assemblies containing 16, 17, 18, and 19 proline residues and ordered arrays of a Ru(II)-bipyridyl chromophore and a phenothiazine electron-transfer donor have been synthesized in a modular fashion by solid-phase peptide synthesis. These arrays are illustrated and abbreviated as CH(3)CO-Pro(6)-Pra(PTZ)-Pro(n)()-Pra(Ru(II)b(2)m)(2+)-Pro(6)-NH(2), where PTZ is 3-(10H-phenothiazine-10)propanoyl and (Ru(II)b'(2)m)(2+) is bis(4,4'-diethylamide-2,2'-bipyridine)(4-methyl,4'-carboxylate,2,2'-bipyridine)ruthenium(II) dication with n = 2 (2), 3 (3), 4 (4), and 5 (5). They contain PTZ as an electron-transfer donor and (Ru(II)b'(2)m)(2+) as a metal-to-ligand charge transfer (MLCT) light absorber and are separated by proline-to-proline through-space distances ranging from 0 (n = 2) to 12.9 A (n = 5) relative to the n = 2 case. They exist in the proline-II helix form in water, as shown by circular dichroism measurements. Following laser flash Ru(II) --> b'(2)m MLCT excitation at 460 nm in water, excited-state PTZ --> Ru(2+) quenching (k(2)) occurs by reductive electron transfer, followed by Ru(+) --> PTZ(+) back electron transfer (k(3)), as shown by transient absorption and emission measurements in water at 25 degrees C. Quenching with DeltaG degrees = -0.1 eV is an activated process, while back electron transfer occurs in the inverted region, DeltaG degrees = -1.8 eV, and is activationless, as shown by temperature dependence measurements. Coincidentally, both reactions have comparable distance dependences, with k(2)( )()varying from = 1.9 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4) and k(3) from approximately 2.0 x 10(9) (n = 2) to 2.2 x 10(6) s(-)(1) (n = 4). For both series there is a rate constant enhancement of approximately 10 for n = 5 compared to n = 4 and a linear decrease in ln k with the through-space separation distance, pointing to a significant and probably dominant through-space component to intrahelical electron transfer.  相似文献   

13.
The diruthenium compound trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CHO)(2) (1; DMBA is N,N'-dimethylbenzamidinate) was prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-4-CHO under the weak base conditions. The aldehyde groups of 1 undergo a condensation reaction with NH(2)C(6)H(4)-4-Y (Y = H and NH(2)) to afford new compounds trans-Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-CH═N-C(6)H(4)-4'-Y)(2) (Y = H (2) and NH(2) (3)). A related compound, Ru(2)(DMBA)(4)(C≡C-C(6)H(4)-4-N═C(Me)Fc)(2) (4), was also prepared from the reaction between Ru(2)(DMBA)(4)(NO(3))(2) and HC≡C-C(6)H(4)-N═C(Me)Fc. X-ray structural studies of compounds 1 and 2 revealed significant deviation from an idealized D(4h) geometry in the coordination sphere of the Ru(2) core. Voltammetric measurements revealed four one electron redox processes for compounds 1-3: the Ru(2) centered oxidation and reduction, and a pair of reductions of the imine or aldehyde groups. Compound 4 displays an additional oxidation attributed to the Fc groups. DFT calculations were performed on model compounds to gain a more thorough understanding of the interaction of the organic functional groups across the diruthenium bridge.  相似文献   

14.
The electrochemistry and spectroelectrochemistry of a novel series of mixed-ligand diruthenium compounds were examined. The investigated compounds having the formula Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl where x = 1-3 and Fap is 2-(2-fluoroanilino)pyridinate anion were made from the reaction of Ru(2)(CH(3)CO(2))(4)Cl with 2-(2-fluoroanilino)pyridine (HFap) in refluxing methanol. The previously characterized Ru(2)(Fap)(4)Cl as well as the three newly isolated compounds represented as Ru(2)(CH(3)CO(2))(Fap)(3)Cl (1), Ru(2)(CH(3)CO(2))(2)(Fap)(2)Cl (2), and Ru(2)(CH(3)CO(2))(3)(Fap)Cl (3) possess three unpaired electrons with a Ru(2)(5+) dimetal core. Complexes 1 and 2 have well-defined Ru(2)(5+/4+) and Ru(2)(5+/6+) redox couples in CH(2)Cl(2), but 3 exhibits a more complicated electrochemical behavior due to equilibria involving association or dissociation of the anionic chloride axial ligand on the initial and oxidized or reduced forms of the compound. The E(1/2) values for the Ru(2)(5+/4+) and Ru(2)(5+/6+) processes vary linearly with the number of CH(3)CO(2)(-) bridging ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl and plots of reversible half-wave potentials vs the number of acetate groups follow linear free energy relationships with the largest substituent effect being observed for the oxidation. The major UV-visible band of the examined compounds in their neutral Ru(2)(5+) form is located between 550 and 800 nm in CH(2)Cl(2) and also varies linearly with the number of CH(3)CO(2)(-) ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl. The electronic spectra of the singly oxidized and singly reduced forms of each diruthenium species were characterized by UV-visible spectroelectrochemistry in CH(2)Cl(2).  相似文献   

15.
Dimers of [Ru(2)(Xap)(4)] bridged by 1,3,5-hexatriyn-diyl (Xap are 2-anilinopyridinate and its aniline substituted derivatives), [Ru(2)(Xap)(4)](2)(μ-C(6)) (1), were prepared. Compounds 1 reacted with 1 equiv of tetracyanoethene (TCNE) to yield the cyclo-addition/insertion products [Ru(2)(Xap)(4)](2){μ-C≡CC(C(CN)(2))-C(C(CN)(2))C≡C} (2) and 1 equiv of Co(2)(dppm)(CO)(6) to yield the η(2)-Co(2) adducts to the middle C≡C bond, [Ru(2)(Xap)(4)](2)(μ-C(6))(Co(2)(dppm)(CO)(4)) (3). Voltammetric and spectroelectrochemical studies revealed that (i) two Ru(2) termini in 1 are sufficiently coupled with the monoanion (1(-)) as a Robin-Day class II/III mixed valence species; (ii) the coupling between two Ru(2) is still significant but somewhat weakened in 3; and (iii) the coupling between two Ru(2) is completely removed by the insertion of TCNE in 2. The attenuation of electronic couplings in 2 and 3 was further explored with both the X-ray diffraction study of representative compounds and spin-unrestricted DFT calculations.  相似文献   

16.
Reaction between cationic units of carboxylate-bridged diruthenium complexes [Ru(2)(mu-O(2)CR)(4)](+) (R = Me, CMePh(2), CMe(3), CH(2)CH(2)OMe, C(Me)=CHEt, C(6)H(4)-p-OMe, Ph) and tetrabutylammonium perrhenate gives complexes with different arrangements in the solid state. Thus, the compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)) [R = Me (1), CMePh(2) (2), CMe(3) (3), CH(2)CH(2)OMe (4), C(Me)=CHEt (5), C(6)H(4)-p-OMe (6), Ph (7)] have polymeric structures with the diruthenium units linked by perrhenate ligands in the axial positions. The structures of complexes 3.THF and 4 were established by single-crystal X-ray diffraction. The tetrahedral geometry of the ReO(4)(-) anion permits the formation of a chain close to the linearity. In contrast to the polymeric chains observed in complexes 1-7, the reaction of [Ru(2)(mu-O(2)CPh)(4)](+) with NBu(4)ReO(4) also affords the compounds Ru(2)(mu-O(2)CPh)(4)(ReO(4))(H(2)O) (8) and NBu(4)[Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)] (9) depending on the reaction conditions. The structure of 8 consists of cationic and anionic units, [Ru(2)(mu-O(2)CPh)(4)(H(2)O)(2)](+) and [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-), linked by hydrogen bonds, which give a three-dimensional net. The structure of complex 9.0.5H(2)O has an anionic unit similar to that of 8, whose counterion is NBu(4)(+). The Ru-Ru bond distances are slightly longer in [Ru(2)(mu-O(2)CPh)(4)(ReO(4))(2)](-) than in the polymeric compounds Ru(2)(mu-O(2)CR)(4)(ReO(4)). The magnetic behavior owes to the existence of zero-field splitting (ZFS) and a weak antiferromagnetic coupling. The experimental data are fitted with a model that considers the ZFS effect using the Hamiltonian (D) = SDS. The weak antiferromagnetic coupling is introduced as a perturbation, using the molecular field approximation.  相似文献   

17.
Liu B  Yin P  Yi XY  Gao S  Zheng LM 《Inorganic chemistry》2006,45(10):4205-4213
In the presence of organic templates, six diruthenium diphosphonates, namely, [H3N(CH2)3NH3]2[Ru2(hedp)2] (1), [H3N(CH2)4NH3]2[Ru2(hedp)2].4H2O (2), [H3N(CH2)5NH3]2[Ru2(hedp)2].4H2O (3), [H3N(CH2)3NH3][Ru2(hedp)(hedpH)].H2O (4), [H3N(CH2)4NH3][Ru2(hedpH(0.5))2].2H2O (5), and [H3N(CH2)5NH3]2[Ru2(hedp)2][Ru2(hedpH)2]] (6) [hedp = 1-hydroxyethylidenediphosphonate, CH3C(OH)(PO3)2] have been synthesized under hydrothermal conditions. Compounds 1-3 contain homovalent paddlewheel cores of Ru2(II,II)(hedp)2(4-) that are connected through edge-sharing of the [RuO5Ru] octahedra, resulting in infinite linear chains. Compounds 4-6 contain mixed-valent diruthenium(II,III) phosphonate paddlewheel cores of Ru2(II,III)(hedpH(n))2(3-2n)- that are connected by phosphonate oxygen atoms, forming distorted square-grid layers in 4 and 6 or a kagomé lattice in 5. Both the templates and the pH values are found to play important roles in directing the final products with particular topologies and oxidation states of the diruthenium unit. The magnetic studies show that weak antiferromagentic interactions are propagated between the homovalent diruthenium units in compounds 1-3. For compounds 4-6, weak ferromagnetic interactions are observed.  相似文献   

18.
Two isothiocyanate diruthenium complexes, (3,1) Ru2(F3ap)4(NCS) 1 and (3,1) Ru2(F3ap)3(F2Oap)(NCS)2 (where F3ap=2,4,6-trifluoroanilinopyridinate anion), were synthesized from (3,1) Ru2(F3ap)4Cl and SCN(-) under different experimental conditions. Each compound was examined as to its structural, electrochemical, spectroscopic, and magnetic properties. Compound 1 contains three unpaired electrons as its parent compound but 2 is diamagnetic. The X-ray molecular structures of 1 and 2 reveal that the NCS group is coordinated to the dimetal unit via nitrogen in both compounds with the Ru-N-C bond angle being 176.5 degrees for 1 and 166.0 degrees for 2. An elongation of the Ru-Ru bond distance and a shortening of both the Ru-Np (p=pyridyl) and the Ru-Na (a=anilino) bond lengths is seen upon going from (3,1) Ru2(F3ap)4Cl to 2, but the conversion of (3,1) Ru2(F3ap)4Cl to 1 does not affect significantly structural features of the Ru2(L) 4 framework. Compound 1 undergoes one reduction and two oxidations, all three of which involve the dimetal core, whereas 2 undergoes two metal-centered reductions, one metal-centered oxidation, and one ligand-based oxidation due to the presence of the F2Oap ligand on the Ru2 complex. The reactivity of 1 with SCN(-) was also investigated.  相似文献   

19.
We have synthesized the mono-ruthenium substituted Keggin-type silicotungstate [SiW(11)O(39)Ru(III)(H(2)O)](5-) (1a) by reaction of the mono-lacunary silicotungstate precursor [SiW(11)O(39)](8-) with Ru(acac)(3) under hydrothermal conditions and isolated as the caesium salt Cs(5)[SiW(11)O(39)Ru(III)(H(2)O)] (1). The DMSO-coordinated complex [SiW(11)O(39)Ru(III)(DMSO)](5-) (2a) was prepared by reaction of 1a with DMSO in aqueous solution at 353 K and isolated as the caesium-potassium mixed salt Cs(4.9)K(0.1)[SiW(11)O(39)Ru(III)(DMSO)] (2). Both compounds 1 and 2 were characterized by single-crystal X-ray structure analysis, powder X-ray structure analysis, UV-Vis spectroscopy, cyclic voltammetry, IR-spectroscopy and elemental analysis. 1 crystallized in the tetragonal space group P4(2)/ncm with a = 20.9299(4), c = 10.3603(4) Angstrom, Z = 4. The ruthenium atom in the Keggin unit could not be distinguished from the tungsten due to disorder. The structural analysis of 2 (monoclinic, P2(1)/c, a = 13.5850(4), b = 20.2764(7), c = 18.1326(4) Angstrom, beta = 90.8730(10) degrees , Z = 4) successfully revealed that the incorporated ruthenium atom is coordinated by DMSO through a Ru-S bond. Polyanion 2a represents the first mono-substituted Keggin ion in which the ruthenium center is not crystallographically disordered. UV-Vis spectroscopy combined with controlled potential electrolysis confirmed that the incorporated rutheniums in 1 and 2 have a valence state of +3. The IR spectra of both 1 and 2 were very similar. All these data indicate that 1 synthesized by reaction of the mono-lacunary silicotungstate K(8)[SiW(11)O(39)] with Ru(acac)(3) under hydrothermal conditions is truly the mono-ruthenium substituted Keggin-type silicotungstate.  相似文献   

20.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号