首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this article, two kinds of high‐order compact finite difference schemes for second‐order derivative are developed. Then a second‐order numerical scheme for a Riemann–Liouvile derivative is established based on a fractional centered difference operator. We apply these methods to a fractional anomalous subdiffusion equation to construct two kinds of novel numerical schemes. The solvability, stability, and convergence analysis of these difference schemes are studied by using Fourier method. The convergence orders of these numerical schemes are and , respectively. Finally, numerical experiments are displayed which are in line with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 213–242, 2016  相似文献   

2.
In this article, we apply a high‐order difference scheme for the solution of some time fractional partial differential equations (PDEs). The time fractional Cattaneo equation and the linear time fractional Klein–Gordon and dissipative Klein–Gordon equations will be investigated. The time fractional derivative which has been described in the Caputo's sense is approximated by a scheme of order , and the space derivative is discretized with a fourth‐order compact procedure. We will prove the solvability of the proposed method by coefficient matrix property and the unconditional stability and ‐convergence with the energy method. Numerical examples demonstrate the theoretical results and the high accuracy of the proposed scheme. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1234–1253, 2014  相似文献   

3.
In this article, a block‐centered finite difference method for fractional Cattaneo equation is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norm with optimal order of convergence both for pressure and velocity are established on nonuniform rectangular grids. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

4.
In this article, we develop a higher order numerical approximation for time dependent singularly perturbed differential‐difference convection‐diffusion equations. A priori bounds on the exact solution and its derivatives, which are useful for the error analysis of the numerical method are given. We approximate the retarded terms of the model problem using Taylor's series expansion and the resulting time‐dependent singularly perturbed problem is discretized by the implicit Euler scheme on uniform mesh in time direction and a special hybrid finite difference scheme on piecewise uniform Shishkin mesh in spatial direction. We first prove that the proposed numerical discretization is uniformly convergent of , where and denote the time step and number of mesh‐intervals in space, respectively. After that we design a Richardson extrapolation scheme to increase the order of convergence in time direction and then the new scheme is proved to be uniformly convergent of . Some numerical tests are performed to illustrate the high‐order accuracy and parameter uniform convergence obtained with the proposed numerical methods.  相似文献   

5.
In this article, a fourth‐order compact and conservative scheme is proposed for solving the nonlinear Klein‐Gordon equation. The equation is discretized using the integral method with variational limit in space and the multidimensional extended Runge‐Kutta‐Nyström (ERKN) method in time. The conservation law of the space semidiscrete energy is proved. The proposed scheme is stable in the discrete maximum norm with respect to the initial value. The optimal convergent rate is obtained at the order of in the discrete ‐norm. Numerical results show that the integral method with variational limit gives an efficient fourth‐order compact scheme and has smaller error, higher convergence order and better energy conservation for solving the nonlinear Klein‐Gordon equation compared with other methods under the same condition. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1283–1304, 2017  相似文献   

6.
In this work, we study finite difference scheme for coupled time fractional Klein‐Gordon‐Schrödinger (KGS) equation. We proposed a linearized finite difference scheme to solve the coupled system, in which the fractional derivatives are approximated by some recently established discretization formulas. These formulas approximate the solution with second‐order accuracy at points different form the grid points in time direction. Taking advantage of this property, our proposed linearized scheme evaluates the nonlinear terms on the previous time level. As a result, iterative method is dispensable. The coupled terms in the scheme bring difficulties in analysis. By carefully studying these effects, we proved that the proposed scheme is unconditionally convergent and stable in discrete norm with energy method. Numerical results are included to justify the theoretical statements.  相似文献   

7.
We construct for all a k‐edge‐connected digraph D with such that there are no edge‐disjoint and paths. We use in our construction “self‐similar” graphs which technique could be useful in other problems as well.  相似文献   

8.
We present a fourth‐order Hermitian box‐scheme (HB‐scheme) for the Poisson problem in a cube. A single‐nonstaggered regular grid is used supporting the discrete unknowns u and . The scheme is fourth‐order accurate for u and in norm. The fast numerical resolution uses a matrix capacitance method, resulting in a computational complexity of . Numerical results are reported on several examples including nonseparable problems. The present scheme is the extension to the three‐dimensional case of the HB‐scheme presented in Abbas and Croisille [J Sci Comp 49 (2011), 239–267]. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 609–629, 2015  相似文献   

9.
The main objective of the paper is to find the approximate solution of fractional integro partial differential equation with a weakly singular kernel. Integro partial differential equation (IPDE) appears in the study of viscoelastic phenomena. Cubic B‐spline collocation method is employed for fractional IPDE. The developed scheme for finding the solution of the considered problem is based on finite difference method and collocation method. Caputo fractional derivative is used for time fractional derivative of order α, . The given problem is discretized in both time and space directions. Backward Euler formula is used for temporal discretization. Collocation method is used for spatial discretization. The developed scheme is proved to be stable and convergent with respect to time. Approximate solutions are examined to check the precision and effectiveness of the presented method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1565–1581, 2017  相似文献   

10.
In this article, first, we establish some compact finite difference schemes of fourth‐order for 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary conditions in two boundary points. Then, we provide numerical analysis for one nonlinear compact scheme by transforming the nonlinear compact scheme into matrix form. And using some novel techniques on the specific matrix emerged in this kind of boundary conditions, we obtain the priori estimates and prove the convergence in norm. Next, we analyze the convergence and stability for one of the linearized compact schemes. To obtain the maximum estimate of the numerical solutions of the linearized compact scheme, we use the mathematical induction method. The treatment is that the convergence in norm is obtained as well as the maximum estimate, further the convergence in norm. Finally, numerical experiments demonstrate the theoretical results and show that one of the linearized compact schemes is more accurate, efficient and robust than the others and the previous. It is worthwhile that the compact difference methods presented here can be extended to 2D case. As an example, we present one nonlinear compact scheme for 2D Ginzburg–Landau equation and numerical tests show that the method is accurate and effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2080–2109, 2015  相似文献   

11.
We analyze the superconvergence properties of the local discontinuous Galerkin (LDG) method applied to the second‐order wave equation in one space dimension. With a suitable projection of the initial conditions for the LDG scheme, we prove that the LDG solution and its spatial derivative are super close to particular projections of the exact solutions for pth‐degree polynomial spaces. We use these results to show that the significant parts of the discretization errors for the LDG solution and its derivative are proportional to ‐degree right and left Radau polynomials, respectively. These results allow us to prove that the p‐degree LDG solution and its derivative are superconvergent at the roots of ‐degree right and left Radau polynomials, respectively, while computational results show higher convergence rate. Superconvergence results can be used to construct asymptotically correct a posteriori error estimates by solving a local steady problem on each element. This will be discussed further in Part II of this work, where we will prove that the a posteriori LDG error estimates for the solution and its derivative converge to the true spatial errors in the L 2‐norm under mesh refinement. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 862–901, 2014  相似文献   

12.
In this article, some high‐order accurate difference schemes of dispersive shallow water waves with Rosenau‐KdV‐RLW‐equation are presented. The corresponding conservative quantities are discussed. Existence of the numerical solution has been shown. A priori estimates, convergence, uniqueness, and stability of the difference schemes are proved. The convergence order is in the uniform norm without any restrictions on the mesh sizes. At last numerical results are given to support the theoretical analysis.  相似文献   

13.
In this paper, we develop a high‐order finite difference scheme for the solution of a time fractional partial integro‐differential equation with a weakly singular kernel. The fractional derivative is used in the Riemann‐Liouville sense. We prove the unconditional stability and convergence of scheme using energy method and show that the convergence order is . We provide some numerical experiments to confirm the efficiency of suggested scheme. The results of numerical experiments are compared with analytical solutions to show the efficiency of proposed scheme. It is illustrated that the numerical results are in good agreement with theoretical ones.  相似文献   

14.
A two‐grid stabilized mixed finite element method based on pressure projection stabilization is proposed for the two‐dimensional Darcy‐Forchheimer model. We use the derivative of a smooth function, , to approximate the derivative of in constructing the two‐grid algorithm. The two‐grid method consists of solving a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh. There are a substantial reduction in computational cost. We prove the existence and uniqueness of solution of the discrete schemes on the coarse grid and the fine grid and obtain error estimates for the two‐grid algorithm. Finally, some numerical experiments are carried out to verify the accuracy and efficiency of the method.  相似文献   

15.
This article considers the dual‐phase‐lagging (DPL) heat conduction equation in a double‐layered nanoscale thin film with the temperature‐jump boundary condition (i.e., Robin's boundary condition) and proposes a new thermal lagging effect interfacial condition between layers. A second‐order accurate finite difference scheme for solving the heat conduction problem is then presented. In particular, at all inner grid points the scheme has the second‐order temporal and spatial truncation errors, while at the boundary points and at the interfacial point the scheme has the second‐order temporal truncation error and the first‐order spatial truncation error. The obtained scheme is proved to be unconditionally stable and convergent, where the convergence order in ‐norm is two in both space and time. A numerical example which has an exact solution is given to verify the accuracy of the scheme. The obtained scheme is finally applied to the thermal analysis for a gold layer on a chromium padding layer at nanoscale, which is irradiated by an ultrashort‐pulsed laser. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 142–173, 2017  相似文献   

16.
To improve the convergence rate in L2 norm from suboptimal to optimal for both electrostatic potential and ionic concentrations in Poisson‐Nernst‐Planck (PNP) system, we propose the mixed finite element method in this article to discretize the electrostatic potential equation, and still use the standard finite element method to discretize the time‐dependent ionic concentrations equations. Optimal error estimates in norm for the electrostatic potential, and in and norms for the ionic concentrations are attained. As a by‐product, the electric field can also achieve a higher approximation order in contrast with the standard finite element method for PNP system. Numerical experiments are performed to validate the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1924–1948, 2017  相似文献   

17.
In this article, we analyze a residual‐based a posteriori error estimates of the spatial errors for the semidiscrete local discontinuous Galerkin (LDG) method applied to the one‐dimensional second‐order wave equation. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We apply the optimal L2 error estimates and the superconvergence results of Part I of this work [Baccouch, Numer Methods Partial Differential Equations 30 (2014), 862–901] to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivative, at a fixed time, converge to the true spatial errors in the L2‐norm under mesh refinement. The order of convergence is proved to be , when p‐degree piecewise polynomials with are used. As a consequence, we prove that the LDG method combined with the a posteriori error estimation procedure yields both accurate error estimates and superconvergent solutions. Our computational results show higher convergence rate. We further prove that the global effectivity indices, for both the solution and its derivative, in the L2‐norm converge to unity at rate while numerically they exhibit and rates, respectively. Numerical experiments are shown to validate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1461–1491, 2015  相似文献   

18.
The Cable equation is one of the most fundamental equations for modeling neuronal dynamics. In this article, we consider a high order compact finite difference numerical solution for the fractional Cable equation, which is a generalization of the classical Cable equation by taking into account the anomalous diffusion in the movement of the ions in neuronal system. The resulting finite difference scheme is unconditionally stable and converges with the convergence order of in maximum norm, 1‐norm and 2‐norm. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix‐vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from required by traditional methods to without using any lossy compression, where and τ is the size of time step, and h is the size of space step. Moreover, we give a compact finite difference scheme and consider its stability analysis for two‐dimensional fractional Cable equation. The applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

19.
In this article, based on the idea of combing symmetrical fractional centred difference operator with compact technique, a series of even‐order numerical differential formulas (named the fractional‐compact formulas) are established for the Riesz derivatives with order . Properties of coefficients in the derived formulas are studied in details. Then applying the constructed fourth‐order formula, a difference scheme is proposed to solve the Riesz spatial telegraph equation. By the energy method, the constructed numerical algorithm is proved to be stable and convergent with order , where τ and h are the temporal and spatial stepsizes, respectively. Finally, several numerical examples are presented to verify the theoretical results.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1754–1794, 2017  相似文献   

20.
In this paper, we consider the numerical solution of the time‐fractional telegraph equation with a nonlocal boundary condition. A novel barycentric Lagrange interpolation collocation method is developed to solve this equation. Two difficulties have been sorted: the singularity of the integration and the higher accuracy. At the same, we put forward a steady barycentric Lagrange interpolation technique to overcome the new “Runge” phenomenon in computation. Error estimates of the barycentric Lagrange interpolation and the time‐fractional telegraph system for the present method are presented in Sobolev spaces. High convergence rates of the proposed method are obtained and are consisted with the numerical values. Especially in the time dimension, we get the error bound, for h‐refinement and for nt‐density in the L2 norms. The numerical results obtained show that the proposed numerical algorithm is accurate and computationally efficient for solving time‐fractional telegraph equation. Experiments demonstrate the high convergence rates of the proposed method are consisted with the theoretical values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号