首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了两个求解空间四阶的时间亚扩散方程的数值方法,其误差阶分别为O(τ+h2)和O(τ2+h2).通过Fourier方法,发现两个差分格式均为无条件稳定的.最后,通过数值例子,验证了两个算法的有效性.  相似文献   

2.
In this article, up to tenth‐order finite difference schemes are proposed to solve the generalized Burgers–Huxley equation. The schemes based on high‐order differences are presented using Taylor series expansion. To establish the numerical solutions of the corresponding equation, the high‐order schemes in space and a fourth‐order Runge‐Kutta scheme in time have been combined. Numerical experiments have been conducted to demonstrate the high‐order accuracy of the current algorithms with relatively minimal computational effort. The results showed that use of the present approaches in the simulation is very applicable for the solution of the generalized Burgers–Huxley equation. The current results are also seen to be more accurate than some results given in the literature. The proposed algorithms are seen to be very good alternatives to existing approaches for such physical applications. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1313‐1326, 2011  相似文献   

3.
In this article, we consider two‐dimensional fractional subdiffusion equations with mixed derivatives. A high‐order compact scheme is proposed to solve the problem. We establish a sufficient condition and show that the scheme converges with fourth order in space and second order in time under this condition.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2141–2158, 2017  相似文献   

4.
In this article, first, we establish some compact finite difference schemes of fourth‐order for 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary conditions in two boundary points. Then, we provide numerical analysis for one nonlinear compact scheme by transforming the nonlinear compact scheme into matrix form. And using some novel techniques on the specific matrix emerged in this kind of boundary conditions, we obtain the priori estimates and prove the convergence in norm. Next, we analyze the convergence and stability for one of the linearized compact schemes. To obtain the maximum estimate of the numerical solutions of the linearized compact scheme, we use the mathematical induction method. The treatment is that the convergence in norm is obtained as well as the maximum estimate, further the convergence in norm. Finally, numerical experiments demonstrate the theoretical results and show that one of the linearized compact schemes is more accurate, efficient and robust than the others and the previous. It is worthwhile that the compact difference methods presented here can be extended to 2D case. As an example, we present one nonlinear compact scheme for 2D Ginzburg–Landau equation and numerical tests show that the method is accurate and effective. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 2080–2109, 2015  相似文献   

5.
The Cable equation is one of the most fundamental equations for modeling neuronal dynamics. In this article, we consider a high order compact finite difference numerical solution for the fractional Cable equation, which is a generalization of the classical Cable equation by taking into account the anomalous diffusion in the movement of the ions in neuronal system. The resulting finite difference scheme is unconditionally stable and converges with the convergence order of in maximum norm, 1‐norm and 2‐norm. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix‐vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from required by traditional methods to without using any lossy compression, where and τ is the size of time step, and h is the size of space step. Moreover, we give a compact finite difference scheme and consider its stability analysis for two‐dimensional fractional Cable equation. The applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.  相似文献   

6.
In this paper, we develop a practical numerical method to approximate a fractional diffusion equation with Dirichlet and fractional boundary conditions. An approach based on the classical Crank–Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second‐order accurate numerical estimates. The solvability, stability, and convergence of the proposed numerical scheme are proved via the Gershgorin theorem. Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

7.
In this paper, we derive a fourth order approximation for the generalized fractional derivative that is characterized by a scale function z(t) and a weight function w(t) . Combining the new approximation with compact finite difference method, we develop a numerical scheme for a generalized fractional diffusion problem. The stability and convergence of the numerical scheme are proved by the energy method, and it is shown that the temporal and spatial convergence orders are both 4. Several numerical experiments are provided to illustrate the efficiency of our scheme.  相似文献   

8.
New compact finite difference schemes of sixth order are derived for the three dimensional Helmholtz equation, Δu-κ2u=-fΔu-κ2u=-f. Convergence characteristics and accuracy are compared and a truncation error analysis is presented for a broad range of κκ-values.  相似文献   

9.
We present the fourth‐order compact finite difference (4cFD) discretizations for the long time dynamics of the nonlinear Klein–Gordon equation (NKGE), while the nonlinearity strength is characterized by ?p with a constant p ∈ ?+ and a dimensionless parameter ? ∈ (0, 1] . Based on analytical results of the life‐span of the solution, rigorous error bounds of the 4cFD methods are carried out up to the time at O(??p) . We pay particular attention to how error bounds depend explicitly on the mesh size h and time step τ as well as the small parameter ? ∈ (0, 1] , which indicate that, in order to obtain ‘correct’ numerical solutions up to the time at O(??p) , the ? ‐scalability (or meshing strategy requirement) of the 4cFD methods should be taken as: h = O(?p/4) and τ = O(?p/2) . It has better spatial resolution capacity than the classical second order central difference methods. By a rescaling in time, it is equivalent to an oscillatory NKGE whose solution propagates waves with wavelength at O(1) in space and O(?p) in time. It is straightforward to get the error bounds of the oscillatory NKGE in the fixed time. Finally, numerical results are provided to confirm our theoretical analysis.  相似文献   

10.
The work presents a novel coupling of the Laplace Transform and the compact fourth‐order finite‐difference discretization scheme for the efficient and accurate solution of linear time‐fractional nonhomogeneous diffusion equations subject to both Dirichlet and Neumann boundary conditions. A translational transformation of the dependent variable ensures the Caputo derivative is aligned with the Riemann‐Louiville fractional derivative. The resulting scheme is computationally efficient and shown to be uniquely solvable in all cases, accurate and convergent to in the spatial domain. The convergence rates in the temporal domain are contour dependent but exhibit geometric convergence. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1184–1199, 2016  相似文献   

11.
In this paper, numerical solutions of fractional Fokker–Planck equations with Riesz space fractional derivatives have been developed. Here, the fractional Fokker–Planck equations have been considered in a finite domain. In order to deal with the Riesz fractional derivative operator, shifted Grünwald approximation and fractional centred difference approaches have been used. The explicit finite difference method and Crank–Nicolson implicit method have been applied to obtain the numerical solutions of fractional diffusion equation and fractional Fokker–Planck equations, respectively. Numerical results are presented to demonstrate the accuracy and effectiveness of the proposed numerical solution techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this article, we proposed a collocation method based on reproducing kernels to solve a modified anomalous subdiffusion equation problem. We give constructively the ‐approximate of the equation whose coefficients are determined optimally by solving a system of linear equations. The final numerical experiments demonstrate that the proposed method is simple, effective, and easy to implement. Copyright © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 289–300, 2014  相似文献   

13.
Locally-one-dimensional difference schemes for the fractional diffusion equation in multidimensional domains are considered. Stability and convergence of locally one-dimensional schemes for this equation are proved.  相似文献   

14.
In this paper, time‐splitting spectral approximation technique has been proposed for Chen‐Lee‐Liu (CLL) equation involving Riesz fractional derivative. The proposed numerical technique is efficient, unconditionally stable, and of second‐order accuracy in time and of spectral accuracy in space. Moreover, it conserves the total density in the discretized level. In order to examine the results, with the aid of weighted shifted Grünwald‐Letnikov formula for approximating Riesz fractional derivative, Crank‐Nicolson weighted and shifted Grünwald difference (CN‐WSGD) method has been applied for Riesz fractional CLL equation. The comparison of results reveals that the proposed time‐splitting spectral method is very effective and simple for obtaining single soliton numerical solution of Riesz fractional CLL equation.  相似文献   

15.
A high‐order finite difference method for the two‐dimensional complex Ginzburg–Landau equation is considered. It is proved that the proposed difference scheme is uniquely solvable and unconditionally convergent. The convergent order in maximum norm is two in temporal direction and four in spatial direction. In addition, an efficient alternating direction implicit scheme is proposed. Some numerical examples are given to confirm the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 876–899, 2015  相似文献   

16.
《Applied Mathematical Modelling》2014,38(15-16):3802-3821
In this paper, our aim is to study the high order finite difference method for the reaction and anomalous-diffusion equation. According to the equivalence of the Riemann–Liouville and Grünwald–Letnikov derivatives under the suitable smooth condition, a second-order difference approximation for the Riemann–Liouville fractional derivative is derived. A fourth-order compact difference approximation for second-order derivative in spatial is used. We analyze the solvability, conditional stability and convergence of the proposed scheme by using the Fourier method. Then we obtain that the convergence order is O(τ2+h4), where τ is the temporal step length and h is the spatial step length. Finally, numerical experiments are presented to show that the numerical results are in good agreement with the theoretical analysis.  相似文献   

17.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, new high‐order backward semi‐Lagrangian methods are developed to solve nonlinear advection–diffusion type problems, which are realized using high‐order characteristic‐tracking strategies. The proposed characteristic‐tracking strategies are second‐order L‐stable and third‐order L(α)‐stable methods, which are based on a classical implicit multistep method combined with a error‐correction method. We also use backward differentiation formulas and the fourth‐order finite‐difference scheme for diffusion problem discretization in the temporal and spatial domains, respectively. To demonstrate the adaptability and efficiency of these time‐discretization strategies, we apply these methods to nonlinear advection–diffusion type problems such as the viscous Burgers' equation. Through simulations, not only the temporal and spatial accuracies are numerically evaluated but also the proposed methods are shown to be superior to the compared existing characteristic‐tracking methods under the same rates of convergence in terms of accuracy and efficiency. Finally, we have shown that the proposed method well preserves the energy and mass when the viscosity coefficient becomes zero.  相似文献   

19.
In this article, some high‐order accurate difference schemes of dispersive shallow water waves with Rosenau‐KdV‐RLW‐equation are presented. The corresponding conservative quantities are discussed. Existence of the numerical solution has been shown. A priori estimates, convergence, uniqueness, and stability of the difference schemes are proved. The convergence order is in the uniform norm without any restrictions on the mesh sizes. At last numerical results are given to support the theoretical analysis.  相似文献   

20.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号