共查询到20条相似文献,搜索用时 15 毫秒
1.
Sibel
zer 《Numerical Methods for Partial Differential Equations》2019,35(5):1928-1943
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L∞ with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated. 相似文献
2.
Seluk Kutluay Melike Karta Nuri M. Yamurlu 《Numerical Methods for Partial Differential Equations》2019,35(6):2221-2235
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L∞ with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated. 相似文献
3.
Fatma Zürnac Muaz Seydaolu 《Numerical Methods for Partial Differential Equations》2019,35(4):1363-1382
We present convergence analysis of operator splitting methods applied to the nonlinear Rosenau–Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie‐Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two‐dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order. 相似文献
4.
In this paper, a coupled Burgers’ equation has been numerically solved by a Galerkin quadratic B‐spline FEM. The performance of the method has been examined on three test problems. Results obtained by the method have been compared with known exact solution and other numerical results in the literature. A Fourier stability analysis of the method is also investigated. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
İdris Dağ Ali Şahin Alper Korkmaz 《Numerical Methods for Partial Differential Equations》2010,26(6):1483-1503
The Galerkin method is used with quadratic B‐spline base functions to obtain the numerical solutions of Fisher's equation which is a one dimensional reaction‐diffusion equation. To observe the effects of reaction and diffusion, four test problems related to pulse disturbance, step disturbance, super‐speed wave and strong reaction are studied. A comparison is performed between the obtained numerical results and some earlier studies. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010 相似文献
6.
Lakshmi Chandrasekharan Nair Ashish Awasthi 《Numerical Methods for Partial Differential Equations》2019,35(3):1269-1289
This paper presents a numerical method based on quintic trigonometric B‐splines for solving modified Burgers' equation (MBE). Here, the MBE is first discretized in time by Crank–Nicolson scheme and the resulting scheme is solved by quintic trigonometric B‐splines. The proposed method tackles nonlinearity by using a linearization process known as quasilinearization. A rigorous analysis of the stability and convergence of the proposed method are carried out, which proves that the method is unconditionally stable and has order of convergence O(h4 + k2). Numerical results presented are very much in accordance with the exact solution, which is established by the negligible values of L2 and L∞ errors. Computational efficiency of the scheme is proved by small values of CPU time. The method furnishes results better than those obtained by using most of the existing methods for solving MBE. 相似文献
7.
In this work we use the sine–cosine and the tanh methods for solving the Rosenau–KdV and Rosenau–Kawahara equations. The two methods reveal solitons and periodic solutions. The study confirms the power of the two schemes. 相似文献
8.
In this work, numerical solution of nonlinear modified Burgers equation is obtained using an improvised collocation technique with cubic B‐spline as basis functions. In this technique, cubic B‐splines are forced to satisfy the interpolatory condition along with some specific end conditions. Crank–Nicolson scheme is used for temporal domain and improvised cubic B‐spline collocation method is used for spatial domain discretization. Quasilinearization process is followed to tackle the nonlinear term in the equation. Convergence of the technique is established to be of order O(h4 + Δt2) . Stability of the technique is examined using von‐Neumann analysis. L2 and L∞ error norms are calculated and are compared with those available in existing works. Results are found to be better and the technique is computationally efficient, which is shown by calculating CPU time. 相似文献
9.
Chaoxia Yang 《Numerical Methods for Partial Differential Equations》2014,30(4):1279-1290
We propose a decoupled and linearized fully discrete finite element method (FEM) for the time‐dependent Ginzburg–Landau equations under the temporal gauge, where a Crank–Nicolson scheme is used for the time discretization. By carefully designing the time‐discretization scheme, we manage to prove the convergence rate , where τ is the time‐step size and r is the degree of the finite element space. Due to the degeneracy of the problem, the convergence rate in the spatial direction is one order lower than the optimal convergence rate of FEMs for parabolic equations. Numerical tests are provided to support our error analysis. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1279–1290, 2014 相似文献
10.
Four numerical techniques based on the linear B‐spline functions are presented for the numerical solution of the Lane–Emden equation. Some properties of the B‐spline functions are presented and are utilized to reduce the solution of the Lane–Emden equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new techniques. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
In this work we propose and analyze a fully discrete modified Crank–Nicolson finite element (CNFE) method with quadrature for solving semilinear second‐order hyperbolic initial‐boundary value problems. We prove optimal‐order convergence in both time and space for the quadrature‐modified CNFE scheme that does not require nonlinear algebraic solvers. Finally, we demonstrate numerically the order of convergence of our scheme for some test problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008 相似文献
12.
Mohan K. Kadalbajoo Puneet Arora 《Numerical Methods for Partial Differential Equations》2010,26(5):1206-1223
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 相似文献
13.
Dileep Kumar Sudhakar Chaudhary V.V.K. Srinivas Kumar 《Numerical Methods for Partial Differential Equations》2019,35(6):2056-2075
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation. 相似文献
14.
Mehdi Dehghan Nasim Shafieeabyaneh Mostafa Abbaszadeh 《Numerical Methods for Partial Differential Equations》2021,37(1):360-382
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples. 相似文献
15.
Mohammad Ramezani 《Mathematical Methods in the Applied Sciences》2019,42(14):4640-4663
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation. 相似文献
16.
In this paper, we first establish the Crank–Nicolson collocation spectral (CNCS) method for two‐dimensional (2D) viscoelastic wave equation by means of the Chebyshev polynomials. And then, we analyze the existence, uniqueness, stability, and convergence of the CNCS solutions. Finally, we use some numerical experiments to verify the correctness of theoretical analysis. This implies that the CNCS model is very effective for solving the 2D viscoelastic wave equations. 相似文献
17.
Muhammad Yaseen Muhammad Abbas Bashir Ahmad 《Mathematical Methods in the Applied Sciences》2021,44(1):901-916
In this paper, an efficient numerical procedure for the generalized nonlinear time‐fractional Klein–Gordon equation is presented. We make use of the typical finite difference schemes to approximate the Caputo time‐fractional derivative, while the spatial derivatives are discretized by means of the cubic trigonometric B‐splines. Stability and convergence analysis for the numerical scheme are discussed. We apply our scheme to some typical examples and compare the obtained results with the ones found by other numerical methods. The comparison shows that our scheme is quite accurate and can be applied successfully to a variety of problems of applied nature. 相似文献
18.
The Crank–Nicolson–Galerkin finite element method for a nonlocal parabolic equation with moving boundaries 下载免费PDF全文
Rui M. P. Almeida José C. M. Duque Jorge Ferreira Rui J. Robalo 《Numerical Methods for Partial Differential Equations》2015,31(5):1515-1533
The aim of this article is to establish the convergence and error bounds for the fully discrete solutions of a class of nonlinear equations of reaction–diffusion nonlocal type with moving boundaries, using a linearized Crank–Nicolson–Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite element methods are investigated. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1515–1533, 2015 相似文献
19.
Reza Mohammadi 《Numerical Methods for Partial Differential Equations》2013,29(4):1173-1191
The cubic B‐spline collocation scheme is implemented to find numerical solution of the generalized Burger's–Huxley equation. The scheme is based on the finite‐difference formulation for time integration and cubic B‐spline functions for space integration. Convergence of the scheme is discussed through standard convergence analysis. The proposed scheme is of second‐order convergent. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are compared with other results given in literature. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
20.
In this article, Exp‐function method is used to obtain an exact solution of the equal‐width wave‐Burgers equation (EW‐Burgers). The method is straightforward and concise, and its applications are promising. It is shown that Exp‐function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving EW‐Burgers equation. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010 相似文献