首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

2.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

3.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

4.
Recently Caputo and Fabrizio introduced a new derivative with fractional order without singular kernel. The derivative can be used to describe the material heterogeneities and the fluctuations of different scales. In this article, we derived a new discretization of Caputo–Fabrizio derivative of order α (1 < α < 2) and applied it into the Cattaneo equation. A fully discrete scheme based on finite difference method in time and Legendre spectral approximation in space is proposed. The stability and convergence of the fully discrete scheme are rigorously established. The convergence rate of the fully discrete scheme in H1 norm is O(τ2 + N1?m), where τ, N and m are the time‐step size, polynomial degree and regularity in the space variable of the exact solution, respectively. Furthermore, the accuracy and applicability of the scheme are confirmed by numerical examples to support the theoretical results.  相似文献   

5.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

6.
In this article, an efficient algorithm for the evaluation of the Caputo fractional derivative and the superconvergence property of fully discrete finite element approximation for the time fractional subdiffusion equation are considered. First, the space semidiscrete finite element approximation scheme for the constant coefficient problem is derived and supercloseness result is proved. The time discretization is based on the L1‐type formula, whereas the space discretization is done using, the fully discrete scheme is developed. Under some regularity assumptions, the superconvergence estimate is proposed and analyzed. Then, extension to the case of variable coefficients is also discussed. To reduce the computational cost, the fast evaluation scheme of the Caputo fractional derivative to solve the fractional diffusion equations is designed. Finally, numerical experiments are presented to support the theoretical results.  相似文献   

7.
In this article, a spatial two-grid finite element (TGFE) algorithm is used to solve a two-dimensional nonlinear space–time fractional diffusion model and improve the computational efficiency. First, the second-order backward difference scheme is used to formulate the time approximation, where the time-fractional derivative is approximated by the weighted and shifted Grünwald difference operator. In order to reduce the computation time of the standard FE method, a TGFE algorithm is developed. The specific algorithm is to iteratively solve a nonlinear system on the coarse grid and then to solve a linear system on the fine grid. We prove the scheme stability of the TGFE algorithm and derive a priori error estimate with the convergence result Ot2 + hr + 1 − η + H2r + 2 − 2η) . Finally, through a two-dimensional numerical calculation, we improve the computational efficiency and reduce the computation time by the TGFE algorithm.  相似文献   

8.
In this paper, we derive a fourth order approximation for the generalized fractional derivative that is characterized by a scale function z(t) and a weight function w(t) . Combining the new approximation with compact finite difference method, we develop a numerical scheme for a generalized fractional diffusion problem. The stability and convergence of the numerical scheme are proved by the energy method, and it is shown that the temporal and spatial convergence orders are both 4. Several numerical experiments are provided to illustrate the efficiency of our scheme.  相似文献   

9.
In this paper, we propose a finite difference/collocation method for two-dimensional time fractional diffusion equation with generalized fractional operator. The main purpose of this paper is to design a high order numerical scheme for the new generalized time fractional diffusion equation. First, a finite difference approximation formula is derived for the generalized time fractional derivative, which is verified with order $2-\alpha$ $(0<\alpha<1)$. Then, collocation method is introduced for the two-dimensional space approximation. Unconditional stability of the scheme is proved. To make the method more efficient, the alternating direction implicit method is introduced to reduce the computational cost. At last, numerical experiments are carried out to verify the effectiveness of the scheme.  相似文献   

10.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

11.
In this paper, we consider the numerical treatment of a fourth‐order fractional diffusion‐wave problem. Our proposed method includes the use of parametric quintic spline in the spatial dimension and the weighted shifted Grünwald‐Letnikov approximation of fractional integral. The solvability, stability, and convergence of the numerical scheme are rigorously proved. It is shown that the theoretical convergence order improves those of earlier work. Simulation is further carried out to demonstrate the numerical efficiency of the proposed scheme and to compare with other methods.  相似文献   

12.
The orthogonal spline collocation (OSC) technique is an efficient way to solve a wide variety of problems that are modeled by ordinary and partial differential equations. In this article, by using OSC method in spatial direction and classical L1 approximation in temporal direction, a fully discrete scheme is established for a class of two‐dimensional multiterm fractional convection‐diffusion reaction equation with variable coefficients. The optimal estimates in Hj (j = 0, 1, 2) norms at each time step are derived. Also, estimate in space is provided. At last, we provide some numerical results to verify the accuracy and efficiency of the proposed algorithm.  相似文献   

13.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

14.
To recover the full accuracy of discretized fractional derivatives, nonuniform mesh technique is a natural and simple approach to efficiently resolve the initial singularities that always appear in the solutions of time-fractional linear and nonlinear differential equations. We first construct a nonuniform L2 approximation for the fractional Caputo's derivative of order 1 < α < 2 and present a global consistency analysis under some reasonable regularity assumptions. The temporal nonuniform L2 formula is then utilized to develop a linearized difference scheme for a time-fractional Benjamin–Bona–Mahony-type equation. The unconditional convergence of our scheme on both uniform and nonuniform (graded) time meshes are proven with respect to the discrete H1-norm. Numerical examples are provided to justify the accuracy.  相似文献   

15.
In this work, we propose a hybrid radial basis functions (RBFs) collocation technique for the numerical solution of fractional advection–diffusion models. In the formulation of hybrid RBFs (HRBFs), there exist shape parameter (c* ) and weight parameter (ϵ) that control numerical accuracy and stability. For these parameters, an adaptive algorithm is developed and validated. The proposed HRBFs method is tested for numerical solutions of some fractional Black–Sholes and diffusion models. Numerical simulations performed for several benchmark problems verified the proposed method accuracy and efficiency. The quantitative analysis is made in terms of L, L2, Lrms , and Lrel error norms as well as number of nodes N over space domain and time-step δt. Numerical convergence in space and time is also studied for the proposed method. The unconditional stability of the proposed HRBFs scheme is obtained using the von Neumann methodology. It is observed that the HRBFs method circumvented the ill-conditioning problem greatly, a major issue in the Kansa method.  相似文献   

16.
In this paper, a meshless collocation method is considered to solve the multi-term time fractional diffusion-wave equation in two dimensions. The moving least squares reproducing kernel particle approximation is employed to construct the shape functions for spatial approximation. Also, the Caputo’s time fractional derivatives are approximated by a scheme of order O(τ 3?α ), 1< α < 2. Stability and convergence of the proposed scheme are discussed. Some numerical examples are given to confirm the efficiency and reliability of the proposed method.  相似文献   

17.
In this paper, we consider the numerical solution of the time‐fractional telegraph equation with a nonlocal boundary condition. A novel barycentric Lagrange interpolation collocation method is developed to solve this equation. Two difficulties have been sorted: the singularity of the integration and the higher accuracy. At the same, we put forward a steady barycentric Lagrange interpolation technique to overcome the new “Runge” phenomenon in computation. Error estimates of the barycentric Lagrange interpolation and the time‐fractional telegraph system for the present method are presented in Sobolev spaces. High convergence rates of the proposed method are obtained and are consisted with the numerical values. Especially in the time dimension, we get the error bound, for h‐refinement and for nt‐density in the L2 norms. The numerical results obtained show that the proposed numerical algorithm is accurate and computationally efficient for solving time‐fractional telegraph equation. Experiments demonstrate the high convergence rates of the proposed method are consisted with the theoretical values.  相似文献   

18.
In this paper, a fast high order difference scheme is first proposed to solve the time fractional telegraph equation based on the ℱℒ 2-1σ formula for the Caputo fractional derivative, which reduces the storage and computational cost for calculation. A compact scheme is then presented to improve the convergence order in space. The unconditional stability and convergence in maximum norm are proved for both schemes, with the accuracy order and , respectively. Difficulty arising from the two Caputo fractional derivatives is overcome by some detailed analysis. Finally, we carry out numerical experiments to show the efficiency and accuracy, by comparing with the ℒ 2-1σ method.  相似文献   

19.
In this article a theoretical framework for the Galerkin finite element approximation to the steady state fractional advection dispersion equation is presented. Appropriate fractional derivative spaces are defined and shown to be equivalent to the usual fractional dimension Sobolev spaces Hs. Existence and uniqueness results are proven, and error estimates for the Galerkin approximation derived. Numerical results are included that confirm the theoretical estimates. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

20.
In this article, we propose and analyze several numerical methods for the nonlinear delay reaction–diffusion system with smooth and nonsmooth solutions, by using Quasi-Wilson nonconforming finite element methods in space and finite difference methods (including uniform and nonuniform L1 and L2-1σ schemes) in time. The optimal convergence results in the senses of L2-norm and broken H1-norm, and H1-norm superclose results are derived by virtue of two types of fractional Grönwall inequalities. Then, the interpolation postprocessing technique is used to establish the superconvergence results. Moreover, to improve computational efficiency, fast algorithms by using sum-of-exponential technique are built for above proposed numerical schemes. Finally, we present some numerical experiments to confirm the theoretical correctness and show the effectiveness of the fast algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号