首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We prove that the real roots of normal random homogeneous polynomial systems with n+1n+1 variables and given degrees are, in some sense, equidistributed in the projective space P(Rn+1)P(Rn+1). From this fact we compute the average number of real roots of normal random polynomial systems given in the Bernstein basis.  相似文献   

2.
We give a practical version of the exclusion algorithm for localizing the zeros of an analytic function and in particular of a polynomial in a compact of . We extend the real exclusion algorithm to a Jordan curve and give a method which excludes discs without any zero. The result of this algorithm is a set of discs arbitrarily small which contains the zeros of the analytic function.  相似文献   

3.
Aberth's method for finding the roots of a polynomial was shown to be robust. However, complex arithmetic is needed in this method even if the polynomial is real, because it starts with complex initial approximations. A novel method is proposed for real polynomials that does not require any complex arithmetic within iterations. It is based on the observation that Aberth's method is a systematic use of Newton's method. The analogous technique is then applied to Bairstow's procedure in the proposed method. As a result, the method needs half the computations per iteration than Aberth's method. Numerical experiments showed that the new method exhibited a competitive overall performance for the test polynomials.  相似文献   

4.
We obtain new upper bounds on the number of distinct roots of lacunary polynomials over finite fields. Our focus will be on polynomials for which there is a large gap between consecutive exponents in the monomial expansion.  相似文献   

5.
For a graph G, we denote by h(G,x) the adjoint polynomial of G. Let β(G) denote the minimum real root of h(G,x). In this paper, we characterize all the connected graphs G with .  相似文献   

6.
受凸体的Steiner多项式的启发,定义了星体的对偶Steiner多项式,并利用对偶Aleksandrov-Fenchel不等式讨论了对偶Steiner多项式的根.进而,得到了关于对偶Steiner多项式的根的一些不等式,这些不等式恰好是关于Steiner多项式的根的不等式的对偶形式.  相似文献   

7.
The topological complexity of an algorithm is the number of its branchings. In the paper we prove that the minimal topological complexity of an algorithm that approximately computes a root of a real polynomial of degreed equalsd/2 for evend, is greater than or equal to 1 for oddd>–3, and equals 1 ford=3 or 5.Translated fromMatematicheskie Zametki, Vol. 60, No. 5, pp. 670–680, November, 1996.This research was supported by the Russian Foundation for Basic Research under grant No. 95-01-00846a and by the INTAS under grant No. 4373.  相似文献   

8.
We present a simple algorithm for approximating all roots of a polynomial p(x) when it has only real roots. The algorithm is based on some interesting properties of the polynomials appearing in the Extended Euclidean Scheme for p(x) and p′(x). For example, it turns out that these polynomials are orthogonal; as a consequence, we are able to limit the precision required by our algorithm in intermediate steps. A parallel implementation of this algorithm yields a P-uniform NC2 circuit, and the bit complexity of its sequential implementation is within a polylog factor of the bit complexity of the best known algorithm for the problem.  相似文献   

9.
In this paper, we put forth a combined method for calculation of all real zeroes of a polynomial equation through the Adomian decomposition method equipped with a number of developed theorems from matrix algebra. These auxiliary theorems are associated with eigenvalues of matrices and enable convergence of the Adomian decomposition method toward different real roots of the target polynomial equation. To further improve the computational speed of our technique, a nonlinear convergence accelerator known as the Shanks transform has optionally been employed. For the sake of illustration, a number of numerical examples are given.  相似文献   

10.
We present a combination of two algorithms that accurately calculate multiple roots of general polynomials.

Algorithm I transforms the singular root-finding into a regular nonlinear least squares problem on a pejorative manifold, and it calculates multiple roots simultaneously from a given multiplicity structure and initial root approximations. To fulfill the input requirement of Algorithm I, we develop a numerical GCD-finder containing a successive singular value updating and an iterative GCD refinement as the main engine of Algorithm II that calculates the multiplicity structure and the initial root approximation. While limitations exist in certain situations, the combined method calculates multiple roots with high accuracy and consistency in practice without using multiprecision arithmetic, even if the coefficients are inexact. This is perhaps the first blackbox-type root-finder with such capabilities.

To measure the sensitivity of the multiple roots, a structure-preserving condition number is proposed and error bounds are established. According to our computational experiments and error analysis, a polynomial being ill-conditioned in the conventional sense can be well conditioned with the multiplicity structure being preserved, and its multiple roots can be computed with high accuracy.

  相似文献   


11.
12.
The paper presents an error-free algorithm to solve a system of linear equations with polynomial coefficients. Modular arithmetic in residual polynomial class and in residual numeric class is employed. The algorithm is iterative and well suited for implementation for computers with vector operations and fast and error-free convolutors.  相似文献   

13.
In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to their connection to maximum matchings in a graph. For a root θ of the matching polynomial, we define θ-barrier and θ-extreme sets. We prove a generalized Berge-Tutte formula and give a characterization for the set of all θ-special vertices in a graph.  相似文献   

14.
15.
In this paper we count the number ?n(0,k), k?n−1, of connected components in the space Δn(0,k) of all real degree n polynomials which a) have all their roots real and simple; and b) have no common root with their kth derivatives. In this case, we show that the only restriction on the arrangement of the roots of such a polynomial together with the roots of its kth derivative comes from the standard Rolle's theorem. On the other hand, we pose the general question of counting all possible root arrangements for a polynomial p(x) together with all its nonvanishing derivatives under the assumption that the roots of p(x) are real. Already the first nontrivial case n=4 shows that the obvious restrictions coming from the standard Rolle's theorem are insufficient. We prove a generalized Rolle's theorem which gives an additional restriction on root arrangements for polynomials.  相似文献   

16.
Let an,n 1 be a sequence of independent standard normal random variables.Consider the random trigonometric polynomial Tn(θ)=∑nj=1 aj cos(jθ),0≤θ≤2π and let Nn be the number of real roots of Tn(θ) in(0,2π).In this paper it is proved that limn →∞ Var(Nn)/n=c0,where 0相似文献   

17.
A strongly polynomial algorithm for the transportation problem   总被引:3,自引:0,他引:3  
For the (linear) transportation problem withm supply nodes,n demand nodes andk feasible arcs we describe an algorithm which runs in time proportional tom logm(k + n logn) (assuming w.l.o.g.mn). The algorithm uses excess scaling. The complexity bound is a slight improvement over the bound achieved by an application of a min-cost-flow algorithm of Orlin to the transportation problem.Corresponding author. Research supported in part by grant no. I-84-095.06/88 of the German—Israeli-Foundation for Scientific Research and Development.  相似文献   

18.
For a multivariate polynomial equation with coefficients in a computable ordered field, two criteria of this equation having real solutions are given. Based on the criteria, decision methods for the existence of real zeros and the semidefiniteness of binaly polynomials are provided. With the aid of computers, these methods are used to solve several examples. The technique is to extend the original field involved in the question to a computable non-Archimedean ordered field containing infinitesimal elements. Project supported by the National Natural Science Foundation of China (Grant No. 19661002) and the Climbing Project.  相似文献   

19.
We investigated an interpolation algorithm for computing outer inverses of a given polynomial matrix, based on the Leverrier–Faddeev method. This algorithm is a continuation of the finite algorithm for computing generalized inverses of a given polynomial matrix, introduced in [11]. Also, a method for estimating the degrees of polynomial matrices arising from the Leverrier–Faddeev algorithm is given as the improvement of the interpolation algorithm. Based on similar idea, we introduced methods for computing rank and index of polynomial matrix. All algorithms are implemented in the symbolic programming language MATHEMATICA , and tested on several different classes of test examples.  相似文献   

20.
A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号