首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The propagation of waves in microstretch thermoelastic homogeneous isotropic plate subjected to stress free thermally insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT) and Lord and Shulman (L–S) theories of thermoelasticity. The secular equations for both symmetric and skew-symmetric wave mode propagation have been obtained. At short wavelength limits, the secular equations for symmetric and skew-symmetric modes reduce to Rayleigh surface wave frequency equation. The amplitudes of dilatation, microrotation, microstretch and temperature distribution for the symmetric and skew symmetric wave modes are computed analytically and presented graphically for different theories of thermoelasticity. The theoretical and numerical computations are found to be in close agreement.  相似文献   

2.
A nonlinear system of equations of hyperbolic type describing the propagation of solitary waves is considered [1]. A solitary wave is characterized in this approximation by two variables — the energy density per unit length measured along its crest, and the direction of the normal to the wave crest. The evolution of a wave described by the system may lead to the appearance of discontinuities, at which there are jumps in the energy density and the direction of the wave crest [2]. To establish the conditions at the discontinuities, a solution describing the interaction of nonparallel solitons [3, 4] is used. The obtained conditions are used to solve the problem of the decay of an arbitrary discontinuity in terms of soliton variables.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 87–93, May–June, 1984.I thank A. G. Kulikovskii and A. A. Barmin for helpful discussions and valuable comments in the preparation of the paper.  相似文献   

3.
The interaction of a long coherent wave with the turbulence on the surface of a liquid is investigated within the framework of the theory of weak turbulence. A closed system of equations is obtained which consists of the dynamic equation for the coherent wave and equations of kinetic type describing the turbulent subsystem. It is shown that because of the interaction with the turbulent subsystem, coherent waves with wave vectors identical in magnitude but opposite in direction are coupled. The additional attenuation of the coherent wave because of the interaction is estimated; this attenuation may be considerably greater than that caused by molecular viscosity. A change in the spectrum of height correlators of the liquid surface is seen in the presence of a coherent wave.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 100–109, January–February, 1973.  相似文献   

4.
The propagation of solitary waves is investigated on the basis of a nonlinear system of equations of hyperbolic type describing the motion of the crest of a solitary wave over the surface of a liquid of variable depth [1]. The existence of solutions with discontinuities, the boundary conditions at which are introduced on the basis of [2, 3], is assumed. In the case of an infinite cylindrical ridge both solitary and periodic captured waves are found. Depending upon the height of the ridge and the parameters of the wave, the encounter between a uniform wave and a semi-infinite ridge yields qualitatively different solutions — continuous and discontinuous, where the primary wave is broken down by the ridge into several solitary waves. The amplitude of the wave may either increase or decrease over the ridge.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 36–93, January–February, 1985.The author is grateful to A. G. Kulikovskii and A. A. Barmin for their interest in his work, useful discussions and valuable comments offered during the preparation of the article for the press.  相似文献   

5.
Stationary simple waves in a plasma with anisotropic pressure are investigated on the basis of the hydrodynamic equations of Chew, Goldberger, and Low. In Sec. 1, for the case where the vectors of the average flow velocity and the magnetic field intensity are parallel, the system of equations is reduced to two quasilinear equations for the velocity components. In Sec. 2 the equations for the characteristics are obtained, the system being assumed to be hyperbolic. For the special case of irrotational flow the character of simple waves in flows adjacent to various contours is studied. Section 3 contains a qualitative investigation of changes in the flow parameters in simple waves. In Sec. 4 the possibility of a transition to an unstable state of the plasma is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 12–19, March–April, 1971.The author thanks V. B. Baranov for the formulation of the problem and for his advice and constant attention to the work and also A. G. Kulikovskii for discussion of the results.  相似文献   

6.
The propagation of long weakly nonlinear waves in an atmospheric waveguide is considered. A model system of Kadomtsev-Petviashvili equations [1], which describes the propagation of such waves, is derived. In the case of one excited wave mode the system of model equations goes over into the Kadomtsev-Petviashvili equation, in which, however, the variables x and t are interchanged. The reasons for this are clarified. In the two-dimensional case an approximate solution of the model equations is constructed, and steady nonlinear waves and their interaction in a collision are considered. The results of a numerical verification of the stability of the approximate steady solutions and of the solution to the problem of decay of the wave into quasisolitons are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 151–157, May–June, 1988.  相似文献   

7.
The propagation of nonstationary weak shock waves in a chemically active medium is essentially dispersive and dissipative. The equations for short-wavelength waves for such media were obtained and investigated in [1–4]. It is of interest to study quasimonochromatic waves with slowly varying amplitude and phase. A general method for obtaining the equations for modulated oscillations in nonlinear dispersive media without dissipation was proposed in [5–8]. In the present paper, for a dispersive, weakly nonlinear and weakly dissipative medium we derive in the three-dimensional formulation equations for waves of short wavelength and a Schrödinger equation, which describes slow modulations of the amplitude and phase of an arbitrary wave. The coefficients of the equations are particularized for the considered gas-liquid mixture. Solutions are obtained for narrow beams in a given defocusing medium as well as linear and nonlinear solutions in the neighborhood of a diffraction beam. A solution near a caustic for quasimonochromatic waves was found in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 133–143, January–February, 1980.  相似文献   

8.
Dispersion relations for a coupled thermoelasticity problem including a hyperbolic heat conduction equation are derived, and their asymptotic analysis is performed. Dependences of the wave number and characteristics of the vibration damping rate on frequency are obtained and compared with similar diagrams in the classical model.  相似文献   

9.
The properties of normal axisymmetric waves propagating through a perfect compressible fluid contained in an elastic thin-walled cylinder are investigated. The problem is solved using the complete system of equations of the dynamic theory of elasticity. The effects of interaction between elastic and fluid waves are studied within a wide frequency range. The numerical results are classified on the basis of data on the properties of partial subsystems. Partial subsystems are those for which the interaction effects are insignificant. For special cases of compound waveguides, the dispersion spectra are constructed and the kinematic and energy characteristics of normal waves are analyzed. Particular attention is given to the lowest normal wave, which has specific properties and participates in the elastic–liquid interaction over a wide frequency range.  相似文献   

10.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

11.
The paper studies the relationship between the physical characteristics of a cylinder and the properties of normal axisymmetric waves in elastic–liquid waveguides. The cylinder is made of a compliant material in which the velocity of shear waves is less than the sonic velocity in a perfect compressible liquid. The complete system of dynamic elasticity equations and the wave equation are used to describe the wave fields in the elastic cylinder and fluid, respectively. This approach allows obtaining the dispersion characteristics of coupled normal waves in compound waveguides over wide ranges of frequencies and wavelengths. The curves of real, imaginary, and complex wave numbers versus frequency are plotted for specific pairs of waveguide materials. Computations are carried out for a thick-walled cylinder filled with a fluid and immersed in either vacuum or a fluid. It is found out that compliant and rigid materials of the cylinder affect differently the wave interaction process in elastic–liquid waveguides  相似文献   

12.
One component of the solution to the problem of flow around a corner within the scope of magnetohydrodynamics, with the interception or stationary reflection of magnetohydrodynamic shock waves, and also steady-state problems comprising an ionizing shock wave, is the steady-state solution of the equations of magnetohydrodynamics, independent of length but depending on a combination of space variables, for example, on the angle. The flows described by these solutions are called stationary simple waves; they were considered for the first time in [1], where the behavior of the flow was investigated in stationary rotary simple waves, in which no change of density occurs. For a magnetic wave, of parallel velocity, the first integrals were found and the solution was reduced to a quadrature. The investigations and the applications of the solutions obtained for a qualitative construction of the problems of streamline flow were continued in [2–8]. In particular, problems were solved concerning flow around thin bodies of a conducting ideal gas. The general solution of the problem of streamline flow or the intersection of shock waves was not found because stationary simple waves with the magnetic field not parallel to the flow velocity were not investigated. The necessity for the calculation of such a flow may arise during the interpretation of the experimental results [9] in relation to the flow of an ionized gas. In the present paper, we consider stationary simple waves with the magnetic field not parallel to the flow velocity. A system of three nonlinear differential equations, describing fast and slow simple waves, is investigated qualitatively. On the basis of the pattern constructed of the behavior of the integral curves, the change of density, magnetic field, and velocity are found and a classification of the waves is undertaken, according to the nature of the change in their physical quantities. The relation between waves with outgoing and incoming characteristics is explained. A qualitative difference is discovered for the flow investigated from the flow in a magnetic field parallel to the flow velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 130–138, September–October, 1976.The author thanks A. A. Barmin and A. G. Kulikovskii for constant interest in the work and for valuable advice.  相似文献   

13.
A boundary-value problem of coupled thermoelasticity for a half-layer with a hole and mixed boundary conditions is solved. The problem is reduced to a system of four singular integral equations. It is solved numerically using the mechanical-quadrature method. A numerical experiment is conducted to study the dynamic stress concentration around cavities of different cross sections. The effect of the coupled thermal and elastic fields on the wave processes in the body is established Translated from Prikladnaya Mekhanika, Vol. 44, No. 10, pp. 28–36, October 2008.  相似文献   

14.
In [1, 2] a mathematical model of the motion of a fluid in a pipe whose axis is a curve in space was discussed and certain simplifications of the problem were studied. The propagation of linear and nonlinear waves in the framework of the model was studied. In the present paper we consider a simple wave flow in a pipe with elastic walls suing one of the models introduced in [1], which, unlike [2], takes into account axial displacements of the pipe. The basic equations describing the propagation of waves in the pipe are obtained.Translated from Zhurnal Prikladnoi Mekhaniki i Technicheskoi Fiziki, No. 3, pp. 58–63, May–June, 1986.  相似文献   

15.
The present paper is concerned with the propagation of plane waves in a transversely isotropic dual-phase-lag generalized thermoelastic solid half-space. The governing equations are solved in x–z plane to show the existence of three plane waves. Reflection of these plane waves from thermally insulated as well as isothermal stress-free surfaces is studied to obtain a system of three non-homogeneous equations in reflection coefficients of reflected waves. For numerical computations of speeds and reflection coefficients, a particular material is modeled as transversely isotropic dual-phase-lag generalized thermoelastic solid half-space. The speeds of plane waves are computed numerically for a certain range of the angle of propagation and are shown graphically against the angle of propagation for the cases of dual-phase-lag (DPL) thermoelasticity, coupled thermoelasticity and Lord–Shulman generalized thermoelasticity. Reflection coefficients of various reflected plane waves are computed numerically for thermally insulated as well as isothermal cases and are shown graphically against the angle of incidence for the cases of DPL thermoelasticity, coupled thermoelasticity and Lord–Shulman generalized thermoelasticity.  相似文献   

16.
The equations describing the stationary envelope of periodic waves on the surface of a liquid of constant or variable depth are investigated. Methods previously used for investigating the propagation of solitons [1–5] are extended to the case of periodic waves. The equations considered are derived from the cubic Schrödinger equation assuming slow variation of the wave parameters. In using these equations it is sometimes necessary to introduce wave jumps. By analogy with the soliton case a wave jump theory in accordance with which the jumps are interpreted as three-wave resonant interactions is considered. The problems of Mach reflection from a vertical wall and the decay of an arbitrary wave jump are solved. In order to provide a basis for the theory solutions describing the interaction of two waves over a horizontal bottom are investigated. The averaging method [6] is used to derive systems of equations describing the propagation of one or two interacting wave's on the surface of a liquid of constant or variable depth. These systems have steady-state solutions and can be written in divergence form.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for useful discussions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 113–121, September–October, 1989.  相似文献   

17.
The space-time continuum (4D-medium) is considered, and a generalized model of reversible dynamic thermoelasticity is constructed as a theory of elasticity of an ideal (defect-free) nonsymmetric 4D-medium that is transversally-isotropic with respect to the time coordinate. The definitions of stresses and strains for the space-time continuum are introduced. The constitutive equations of the medium model relating the components of nonsymmetric stress and distortion 4D-tensors are stated. Physical interpretations of all tensor components of the thermomechanical properties are given. The Lagrangian of the generalized model of coupled dynamic thermoelasticity is presented, and the Euler equations are analyzed. It is shown that the three Euler equations are generalized equations of motion of the dynamic classical thermoelasticity, and the last, fourth, equation is a generalized heat equation which allows one to predict the wave properties of heat. An energy-consistent version of thermoelasticity is constructed where the Duhamel-Neumann and Maxwell-Cattaneo laws (a nonclassical generalization of the Fourier law for the heat flow) are direct consequences of the constitutive equations.  相似文献   

18.
Unsteady wave processes in vapor-liquid media containing bubbles are investigated taking into account the unsteady interphase heat and mass transfer. A single velocity model of the medium with two pressures is used for this, which takes into account the radial inertia of the liquid with a change in volume of the medium and the temperature distribution in it [1]. The system of original differential equations of the model is converted into a form suitable for carrying out numerical integration. The basic principles governing the evolution of unsteady waves are studied. The determining influence of the interphase heat and mass transfer on the wave behavior is demonstrated. It is found that the time and distance at which the waves reach a steady configuration in a vapor-liquid bubble medium are considerably less than the correponding characteristics in a gas-liquid medium. The results of the calculation are compared with experimental data. The propagation of acoustic disturbances in a liquid with vapor bubbles was studied theoretically in [2]. The evolution of waves of small but finite amplitude propagating in one direction in a bubbling vapor-liquid medium is investigated in [3, 4] on the basis of the generalization of the Burgers-Korteweg-de Vries equation obtained by the authors. An experimental investigation of shock waves in such a medium is reported in [5, 6], and the structure of steady shock waves is discussed [7].Translated from Izvestiya Akademii Nauk SSSR, Hekhanika Zhidkosti i Gaza, No. 5, pp. 117–125, September–October, 1984.  相似文献   

19.
The equations of motion of a nonisothermal adsorbable mixture with enhanced values of the concentrations of the components in the case of infinitely large coefficients of heat and mass transfer reduce to a hyperbolic quasilinear system of equations. The invariant solutions of this system are analyzed. Convexity conditions are obtained under which a traveling-wave regime is realized in the porous medium. A system of equations is found for determining the concentrations of the adsorbable components of the mixture when a self-similar regime of dispersing waves is realized. For the case of finite values of the coefficients of heat and mass transfer, expressions are given for the width of the stationary front in the traveling-wave regime.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 76–86, September–October, 1980.  相似文献   

20.
An examination is made of the two-dimensional, almost stationary flow of an ideal gas with small but clear variations in its parameters. Such gas motion is described by a system of two quasilinear equations of mixed type for the radial and tangential velocity components [1, 2]. Partial solutions [3, 4], characterizing the variation in the gas parameters in the vicinity of the shock wave front (in the short-wave region), are known for this system of equations. The motion of the initial discontinuity of the short waves derived from the velocity components with respect to polar angle and their damping are studied in the report. A solution of the equations characterizing the arrangement of the initial discontinuity derived from the velocities is presented for one particular case of the class of exact solutions of the two parameter type [4]. Functions are obtained which express the nature of the variation in velocity of the front of the damped wave and its curvature.Translation from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 55–58, May–June, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号