首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We address the problem of inertial property of matter through analysis of the motion of an extended charged particle. Our approach is based on the continuity equation for momentum (Newton’s second law) taking due account of the vector potential and its convective derivative. We obtain a development in terms of retarded potentials allowing an intuitive physical interpretation of its main terms. The inertial property of matter is then discussed in terms of a kind of induction law related to the extended charged particle’s own vector potential. Moreover, it is obtained a force term that represents a drag force acting on the charged particle when in motion relatively to its own vector potential field lines. The time rate of variation of the particle’s vector potential leads to the acceleration inertia reaction force, equivalent to the Schott term responsible for the source of the radiation field. We also show that the velocity dependent term of the particle’s vector potential is connected with the relativistic increase of mass with velocity and generates a longitudinal stress force that is the source of electric field lines deformation. In the framework of classical electrodynamics, we have shown that the electron mass has possibly a complete electromagnetic origin and the obtained covariant equation solves the “4/3 mass paradox” for a spherical charge distribution.  相似文献   

2.
We analytically compute the orbital effects induced on the motion of a spinning particle geodesically traveling around a central rotating body by the general relativistic two-body spin–spin and spin-orbit leading-order interactions. Concerning the spin-orbit term, we compute the long-term variations due to the particle’s spin by finding secular precessions for the inclination I of the particle’s orbit, its longitude of the ascending node Ω and the longitude of pericenter v{\varpi} . Moreover, we generalize the well-known Lense-Thirring precessions to a generic orientation of the source’s angular momentum by obtaining an entirely new effect represented by a secular precession of I, and additional secular precessions of Ω and v{\varpi} as well. The spin–spin interaction is responsible of gravitational effects à la Stern-Gerlach consisting of secular precessions of I, W, v{I, \Omega, \varpi} and the mean anomaly M{\mathcal{M}} . Such results are obtained without resorting to any approximations either in the particle’s eccentricity e or in its inclination I; moreover, no preferred orientations of both the system’s angular momenta are adopted. Their generality allows them to be applied to a variety of astronomical and astrophysical scenarios like, e.g., the Sun and its planets and the double pulsar PSR J0737-3039A/B. It turns out that the orbital precessions caused by the spin–spin and the spin-orbit perturbations due to the less massive body are below the current measurability level, especially for the solar system and the Stern-Gerlach effects. Concerning the solar Lense-Thirring precessions, the slight misalignment of the solar equator with respect to the ecliptic reduces the gravitomagnetic node precession of Mercury down to a 0.08 mas per century level with respect to the standard value of 1 mas per century obtained by aligning the z axis with the Sun’s angular momentum. The new inclination precession is as large as 0.06 mas per century, while the perihelion’s rate remains substantially unchanged, amounting to −2 mas per century. Further studies may be devoted to the extrasolar planets which exhibit a rich variety of orbital and rotational configurations.  相似文献   

3.
After taking into account energy conservation and the particle’s self-gravitation interaction, Hawking radiation of the massive particle as tunneling from Schwarzshild-anti-de Sitter black hole is studied by using Parikh-Wilczek’s semi-classical quantum tunneling approach. Meanwhile, Hawking radiation as tunneling from the black hole is reexamined by developing Angheben–Nadalini–Vanzo–Zerbini (ANVZ) covariant method to cover energy conservation and the particle’s self-gravitation interaction. Both the results perfectly generalize those obtained by Parikh and Wilczek, and show that the tunneling rate is related to the change of Bekenstein-Hawking entropy, and the factual emission spectrum is not exactly thermal, but satisfies the underlying unitary theory. PACS: 04.70-s, 9760. Lf.  相似文献   

4.
In this work we first obtain a trajectory of a freely falling charged particle in de Sitter space and then in the classical approach, the effect of electromagnetic self-force on particle’s trajectory has been considered. Finally, some limits for the problem have been presented.  相似文献   

5.
Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein–Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.  相似文献   

6.
7.
8.
We generalise the classical Transition by Breaking of Analyticity for the class of Frenkel–Kontorova models studied by Aubry and others to non-zero Planck’s constant and temperature. This analysis is based on the study of a renormalization operator for the case of irrational mean spacing using Feynman’s functional integral approach. We show how existing classical results extend to the quantum regime. In particular we extend MacKay’s renormalization approach for the classical statistical mechanics to deduce scaling of low frequency effects and quantum effects. Our approach extends the phenomenon of hierarchical melting studied by Vallet, Schilling and Aubry to the quantum regime  相似文献   

9.
We apply the generalization of the Parikh–Wilczek method to the tunneling of massive particles from noncommutative inspired Schwarzschild black holes. By deriving the equation of radial motion of the tunneling particle directly, we calculate the emission rate which is shown to be dependent on the noncommutative parameter besides the energy and mass of the tunneling particle. After equating the emission rate to the Boltzmann factor, we obtain the modified Hawking temperature which relates to the noncommutativity and recovers the standard Hawking temperature in the commutative limit. We also discuss the entropy of the noncommutative inspired Schwarzschild black hole and its difference after and before a massive particle’s emission.  相似文献   

10.
11.
We investigate the massive particle’s tunneling radiation from Schwarzchild black holes in higher-dimensional de Sitter and Anti-de Sitter space-times. Difference from the mass-less particle, the geodesics of the massive particle is not light-like, but decided by the phase velocity. We focus on s-waves, extend Parikh and Wilczek’s semi-classical tunneling method, and calculate the massive particle’s emission rate. It is shown that the emission rate is relevant to the change of the black hole’s entropy respectively, and the result takes the same functional form as that of the mass-less particle.  相似文献   

12.
13.
Motion of an ensemble of non-interacting classical particles in a space-periodic potential subjected to a weak external wave-like perturbation is considered. With large values of the wavenumber, the perturbation causes a resonance-induced chaotic layer in a certain area of phase space. Different scenarios of the emergence of chaos are considered. Adiabatic space or time modulation of the phase of the perturbation changes the location of the chaotic layer. A significant number of particles trapped within the chaotic layer is retained inside in course of the adiabatic modulation, revealing autoresonant behavior. We show that this phenomenon can be used to generate a directed ballistic current using a weak perturbation, even if particle’s energies are initially close to the minimal value.  相似文献   

14.
A single classical isoergic particle was placed in a cube and allowed to propagate for 100 ns to 10 ms. The interaction of the particle with the inner wall of the cube was modeled as a linear combination of specular and random reflection, the extent of the combination being governed by a user-defined “roughness” parameter α. As a function of α, the particle’s relative pressure and density spontaneously took on an inhomogenous distribution.  相似文献   

15.
Curved multi-dimensional space-times (5D and higher) are constructed by embedding them in one higher-dimensional flat space. The condition that the embedding coordinates have a separable form, plus the demand of an orthogonal resulting space-time, implies that the curved multi-dimensional space-time has 4D de-Sitter subspaces (for constant extra-dimensions) in which the 3D subspace has an accelerated expansion. A complete determination of the curved multi-dimensional spacetime geometry is obtained provided we impose a new type of “equivalence principle”, meaning that there is a geodesic which from the embedding space has a rectliniar motion. According to this new equivalence principle, we can find the extra-dimensions metric components, each curved multi-dimensional spacetime surface’s equation, the energy-momentum tensors and the extra-dimensions as functions of a scalar field. The generic geodesic in each 5D spacetime are studied: they include solutions where particle’s motion along the extra-dimension is periodic and the 3D expansion factor is inflationary (accelerated expansion). Thus, the 3D subspace has an accelerated expansion.  相似文献   

16.
We study the motion of a heavy tracer particle weakly coupled to a dense ideal Bose gas exhibiting Bose-Einstein condensation. In the so-called mean-field limit, the dynamics of this system approaches one determined by nonlinear Hamiltonian evolution equations describing a process of emission of Cerenkov radiation of sound waves into the Bose-Einstein condensate along the particle’s trajectory. The emission of Cerenkov radiation results in a friction force with memory acting on the tracer particle and causing it to decelerate until it comes to rest.
“A moving body will come to rest as soon as the force pushing it no longer acts on it in the manner necessary for its propulsion.”—— Aristotle  相似文献   

17.
The deviation of the path of a spinning particle from a circular geodesic in the Schwarzschild spacetime is studied by an extension of the idea of geodesic deviation. Within the Mathisson–Papapetrou–Dixon model and assuming the spin parameter to be sufficiently small so that it makes sense to linearize the equations of motion in the spin variables as well as in the geodesic deviation, the spin–curvature force adds an additional driving term to the second order system of linear ordinary differential equations satisfied by nearby geodesics. Choosing initial conditions for geodesic motion leads to solutions for which the deviations are entirely due to the spin–curvature force, and one finds that the spinning particle position for a given fixed total spin oscillates roughly within an ellipse in the plane perpendicular to the motion, while the azimuthal motion undergoes similar oscillations plus an additional secular drift which varies with spin orientation.  相似文献   

18.
We calculate the first-passage time distribution for diffusion through a cylindrical pore with sticky walls. A particle diffusively explores the interior of the pore through a series of binding and unbinding events with the cylinder wall. Through a diagrammatic expansion we obtain first-passage time statistics for the particle’s exit from the pore. Connections between the model and nucleocytoplasmic transport in cells are discussed.  相似文献   

19.
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle’s configurations evolve in space-time in terms of a parameter σ with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of σ is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter σ is shown to tend to the particle’s proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by σ as the dynamical temporal parameter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号