首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call Local Topological Quantum Order and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al. on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.  相似文献   

2.
We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and threfore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with a number of examples.Copyright © 1994 by the author.FFaithful reproduction of this article by any means is permitted for non-commercial purposes.  相似文献   

3.
We consider the generic condition for vectors—both null and non-null—at a fixed pointp of a spacetime, and ask just how generic this condition is. In a general spacetime, if the curvature is not zero at the pointp, then the generic condition is found to be generic in the mathematical sense that it holds on an open dense set of vectors atp; more specifically, if there are as many as five non-null vectors in general position atp which fail to satisfy the generic condition, then the curvature vanishes atp. If the Riemann tensor is restricted to special forms, then stronger statements hold: An Einstein spacetime with three linearly independent nongeneric timelike vectors atp is flat atp. A Petrov type D spacetime may not have any nongeneric timelike vectors except possibly those lying in the plane of the two principal null directions; if any of the non-null vectors in such a plane are nongeneric, then so are all the vectors of that plane, as well as the plane orthogonal to it.  相似文献   

4.
We study systems of conservation laws arising in two models of adhesion particle dynamics. The first is the system of free particles which stick under collision. The second is a system of gravitationally interacting particles which also stick under collision. In both cases, mass and momentum are conserved at the collisions, so the dynamics is described by 2×2 systems of conservations laws. We show that for these systems, global weak solutions can be constructed explicitly using the initial data by a procedure analogous to the Lax-Oleinik variational principle for scalar conservation laws. However, this weak solution is not unique among weak solutions satisfying the standard entropy condition. We also study a modified gravitational model in which, instead of momentum, some other weighted velocity is conserved at collisions. For this model, we prove both existence and uniqueness of global weak solutions. We then study the qualitative behavior of the solutions with random initial data. We show that for continuous but nowhere differentiable random initial velocities, all masses immediately concentrate on points even though they were continuously distributed initially, and the set of shock locations is dense.  相似文献   

5.
We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are open and the length of every gap tends to zero linearly. Moreover, for a sufficiently small coupling, the sum of the spectrum with itself is an interval. This last result provides a rigorous explanation of a phenomenon for the Fibonacci square lattice discovered numerically by Even-Dar Mandel and Lifshitz. Finally, we provide explicit upper and lower bounds for the solutions to the difference equation and use them to study the spectral measures and the transport exponents.  相似文献   

6.
A new inversion formula for the Laplace transformation of tempered distributions with supports in the closed positive semiaxis is obtained. The inverse Laplace transform of a tempered distribution is defined by means of a limit of a special distribution constructed from this distribution. The weak spectral condition on the Euclidean Green's functions implies that some of the limits needed for the inversion formula exist for any Euclidean Green's function with an even number of variables. We then prove that the initial Osterwalder-Schrader axioms [1] and the weak spectral condition are equivalent with the Wightman axioms.The research described in this publication was made possible in part by Grant No. 93-011-147 from the Russian Foundation for Basic Research  相似文献   

7.
分别用马尔可夫与非马尔可夫方法推导出二能级系统与库相互作用的耗散动力学,并把失谐谱密度与一个光子带隙的谱密度下的计算结果与精确解进行比较。对于失谐谱密度,分别讨论在马尔可夫与非马尔可夫库的激发态布居数,发现无论是短时的弱耦合区域,还是长时间的强耦合区域,非马尔可夫方法比马尔可夫方法更加接近精确解,而马尔可夫近似主要适用于弱耦合条件;对于光子带隙谱密度,主要考虑了小带宽的布居数,结果显示马尔可夫方法主要适用于弱耦合条件,而非马尔可夫方法主要适用于强耦合情形。结果表明:对于不同谱密度、不同的耦合区域,只有选择合适的马尔可夫或非马尔可夫方法才能精确描述系统的动力学。  相似文献   

8.
分别用马尔可夫与非马尔可夫方法推导出二能级系统与库相互作用的耗散动力学,并把失谐谱密度与一个光子带隙的谱密度下的计算结果与精确解进行比较。对于失谐谱密度,分别讨论在马尔可夫与非马尔可夫库的激发态布居数,发现无论是短时的弱耦合区域,还是长时间的强耦合区域,非马尔可夫方法比马尔可夫方法更加接近精确解,而马尔可夫近似主要适用于弱耦合条件;对于光子带隙谱密度,主要考虑了小带宽的布居数,结果显示马尔可夫方法主要适用于弱耦合条件,而非马尔可夫方法主要适用于强耦合情形。结果表明:对于不同谱密度、不同的耦合区域,只有选择合适的马尔可夫或非马尔可夫方法才能精确描述系统的动力学。  相似文献   

9.
The existence and stability of timelike and null circular orbits (COs) in the equatorial plane of general static and axisymmetric (SAS) spacetime are investigated in this work. Using the fixed point approach, we first obtained a necessary and sufficient condition for the non-existence of timelike COs. It is then proven that there will always exist timelike COs at large \(\rho \) in an asymptotically flat SAS spacetime with a positive ADM mass and moreover, these timelike COs are stable. Some other sufficient conditions on the stability of timelike COs are also solved. We then found the necessary and sufficient condition on the existence of null COs. It is generally shown that the existence of timelike COs in SAS spacetime does not imply the existence of null COs, and vice-versa, regardless whether the spacetime is asymptotically flat or the ADM mass is positive or not. These results are then used to show the existence of timelike COs and their stability in an SAS Einstein-Yang-Mills-Dilaton spacetimes whose metric is not completely known. We also used the theorems to deduce the existence of timelike and null COs in some known SAS spacetimes.  相似文献   

10.
We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.  相似文献   

11.
We study the relation between the spectral gap above the ground state and the decay of the correlations in the ground state in quantum spin and fermion systems with short-range interactions on a wide class of lattices. We prove that, if two observables anticommute with each other at large distance, then the nonvanishing spectral gap implies exponential decay of the corresponding correlation. When two observables commute with each other at large distance, the connected correlation function decays exponentially under the gap assumption. If the observables behave as a vector under the U(1) rotation of a global symmetry of the system, we use previous results on the large distance decay of the correlation function to show the stronger statement that the correlation function itself, rather than just the connected correlation function, decays exponentially under the gap assumption on a lattice with a certain self-similarity in (fractal) dimensions D < 2. In particular, if the system is translationally invariant in one of the spatial directions, then this self-similarity condition is automatically satisfied. We also treat systems with long-range, power-law decaying interactions.  相似文献   

12.
For (n+1)-dimensional asymptotically anti-de Sitter (AdS) spacetimes which have holographic duals on their n-dimensional conformal boundaries, we show that the imposition of causality on the boundary theory is sufficient to prove positivity of mass for the spacetime when n> or =3, without the assumption of any local energy condition. We make crucial use of a time-delay formula relating the Ashtekar-Magnon mass of the spacetime to the time delay of a bulk null curve relative to that of a boundary null geodesic. We also discuss holographic causality for the negative mass AdS soliton and its implications for the positive energy conjecture of Horowitz and Myers.  相似文献   

13.
We construct a set of exact ground states with a localized ferromagnetic domain wall and with an extended spiral structure in a deformed flat-band Hubbard model in arbitrary dimensions. We show the uniqueness of the ground state for the half-filled lowest band in a fixed magnetization subspace. The ground states with these structures are degenerate with all-spin-up or all-spin-down states under the open boundary condition. We represent a spin one-point function in terms of local electron number density, and find the domain wall structure in our model. We show the existence of gapless excitations above a domain wall ground state in dimensions higher than one. On the other hand, under the periodic boundary condition, the ground state is the all-spin-up or all-spin-down state. We show that the spin-wave excitation above the all-spin-up or -down state has an energy gap because of the anisotropy  相似文献   

14.
We show that the typical wind-tree model, in the sense of Baire, is recurrent and has a dense set of periodic orbits. The recurrence result also holds for the Lorentz gas: the typical Lorentz gas, in the sense of Baire, is recurrent. These Lorentz gases need not be of finite horizon!  相似文献   

15.
Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems. On a quantum computer, only log2N qubits are required for the simulation of an N-dimensional quantum system, hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods. Recently, a quantum simulation approach was proposed for studying photosynthetic light harvesting [npj Quantum Inf. 4, 52 (2018)]. In this paper, we apply the approach to simulate the open quantum dynamics of various photosynthetic systems. We show that for Drude–Lorentz spectral density, the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency. We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density. The effects of different types of baths, e.g., Ohmic, sub-Ohmic, and super-Ohmic spectral densities are also studied. The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.  相似文献   

16.
Global properties of maximal future Cauchy developments of stationary, m-dimensional asymptotically flat initial data with an outer trapped boundary are analyzed. We prove that, whenever the matter model is well posed and satisfies the null energy condition, the future Cauchy development of the data is a black hole spacetime. More specifically, we show that the future Killing development of the exterior of a sufficiently large sphere in the initial data set can be isometrically embedded in the maximal Cauchy development of the data. In the static setting we prove, by working directly on the initial data set, that all Killing prehorizons are embedded whenever the initial data set has an outer trapped boundary and satisfies the null energy condition. By combining both results we prove a uniqueness theorem for static initial data sets with outer trapped boundary.  相似文献   

17.
We prove the adiabatic theorem for quantum evolution without the traditional gap condition. All that this adiabatic theorem needs is a (piecewise) twice differentiable finite dimensional spectral projection. The result implies that the adiabatic theorem holds for the ground state of atoms in quantized radiation field. The general result we prove gives no information on the rate at which the adiabatic limit is approached. With additional spectral information one can also estimate this rate.  相似文献   

18.
We propose a simple cellular automaton for traffic flow within the fundamental diagram, which could reproduce aspects of the three-phase theory. This so-called average space gap model (ASGM) is based on the Nagel–Schreckenberg model with additional slow-to-start and anticipation rules. The anticipation rule takes into account the average space gap of multiple leading vehicles and conveys to the model its three-phase property. Due to the anticipation rule, ASGM can show the transition from free flow to synchronized flow. Due to the slow-to-start rule, ASGM can show the spontaneous wide moving jam emerges in the synchronized flow. Simulations are carried out for periodic and open boundary conditions. Under periodic boundary condition, the fundamental diagram, and the properties of synchronized flow are studied. Under open boundary condition, different congested patterns induced by an on-ramp are analyzed. We found that the ASGM produces the same spatiotemporal dynamics as many of the more complex three-phase models. Due to its simplicity and its close relation to conventional slow-to-start models, this model can shed light on the relation between ‘two-phase’ and three-phase models.  相似文献   

19.
We use existence results for Jang’s equation and marginally outer trapped surfaces (MOTSs) in 2 + 1 gravity to obtain nonexistence of geons in 2 + 1 gravity. In particular, our results show that any 2 + 1 initial data set, which obeys the dominant energy condition with cosmological constant Λ ≥ 0 and which satisfies a mild asymptotic condition, must have trivial topology. Moreover, any data set obeying these conditions cannot contain a MOTS. The asymptotic condition involves a cutoff at a finite boundary at which a null mean convexity condition is assumed to hold; this null mean convexity condition is satisfied by all the standard asymptotic boundary conditions. The results presented here strengthen various aspects of previous related results in the literature. These results not only have implications for classical 2 + 1 gravity but also apply to quantum 2 + 1 gravity when formulated using Witten’s solution space quantization.  相似文献   

20.
We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号