首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

2.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

3.
Spherical Fe3O4 nanoparticles (NPs) were prepared by hydrothermal synthesis and characterized by scanning electron microscopy and X-ray diffraction. A glassy carbon electrode was modified with such NPs to result in a sensor for Pb(II) that is based on the strong inducing adsorption ability of iodide. The electrode gives a pair of well-defined redox peaks for Pb(II) in pH 5.0 buffer containing 10 mM concentrations of potassium iodide, with anodic and cathodic peak potentials at ?487 mV and ?622 mV (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.10 to 44 nM, and the detection limit is 40 pM at an SNR of 3. The sensor exhibits high selectivity and reproducibility.
Figure
An electrochemical sensor for Pb2+ was fabricated based on the glassy carbon electrode modified with Fe3O4 NPs and the strong inducing adsorption ability of I?. The sensor had excellent stability, high sensitivity, ease of construction and utilization for Pb(II) determination  相似文献   

4.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

5.
A sensitive amperometric sensor for norfloxacin (NF) was introduced. The receptor layer was prepared by molecularly imprinted photopolymerization of acrylamide and trimethylolpropane trimethacrylate on the surface of a gold electrode. The binding mechanism of the molecularly imprinted polymer was explored by ultraviolet (UV) and infrared (IR) spectroscopy. The chemosensor was characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance (EI), and scanning electron microscopy (SEM). The electrode prepared by photopolymerization has a better recognition ability to template molecules than that of electropolymerization and NIP. Some parameters affecting sensor response were optimized. Norfloxacin was detected by measurements of an amperometric it curve. The linear relationships between current and logarithmic concentration are obtained from 1.0?×?10?9 to 1.0?×?10?3?mol?L?1. The detection limit of the sensor was 1.0?×?10?10?mol?L?1. The proposed method is sensitive, simple, and cheap, and is applied to detect NF in human urine successfully.
Figure
Amperometric i-t curves of MIPs electrode  相似文献   

6.
An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0?×?10?7?~?1.5?×?10?5 mol·L?1 and 2.4?×?10?4?~?3.4?×?10?3 mol·L?1, with a detection limit of 1.0?×?10?7 mol·L?1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.
Figure
In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3?/[Fe(CN)6]4? varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.  相似文献   

7.
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs) via continuous cycling between 0 and 0.9 V (vs. SCE). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V. The apparent surface coverage of the electrode is at least 24 times higher (2.7?×?10?10 mol cm?2) than that obtained with a bare GCE (1.1?×?10?11 mol cm?2). This is attributed to a remarkably strong synergistic effect between the acid-pretreated SWCNTs and the electrodeposited PCV coating. Response is fast (2 s) and sensitive (281 mA M?1 cm?2). Other features include a wide linear range (150 nM to 0.4 mM) and a low detection limit (150 nM at an SNR of 3). The sensor has been successfully applied to the determination of hydrazine in water and cigarette samples with good accuracy and precision. In addition, the morphology and the wetting properties of the coating were studied by scanning electromicroscopy and contact angle measurements.
Figure
A glassy carbon electrode (GCE) was modified with pyrocatechol violet (PCV) that was electrodeposited on single walled carbon nanotubes (SWCNTs). The resulting electrode exhibits excellent electrocatalytic activity towards the oxidation of hydrazine at 0.3 V with fast response, wide linear range and a low detection limit.  相似文献   

8.
An amperometric immunosensor has been developed for sensitive determination of hepatitis B surface antigen as a model protein. A glassy carbon electrode was modified with an assembly of positively charged poly(allylamine)-branched ferrocene (PAA-Fc) and negatively charged gold nanoparticles (Au NPs). The formation of PAA-Fc effectively avoids the leakage of Fc, retains its electrochemical activity, and enhances the conductivity of the composite. The adsorption of Au NPs onto the PAA-Fc matrix provides sites for the immobilization of the antigen and a favorable micro-environment to maintain its activity. The morphologies and electrochemistry of the sensing film were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Factors influencing the performance of the immunosensor were studied in detail. The concentration of the antigen can be quantitated (by measuring the decrease of the amperometric response resulting from the specific binding between antigen and antibody) in the range between 0.1 and 150?ng?mL?C1, with a detection limit of 40?pg?mL?C1 (S/N = 3). The method is economical, efficient, and potentially attractive for clinical immunoassays.
Figure
A novel and sensitive amperometric immunosensor based on the assembly of biocompatible positively charged poly(allylamine)-branched ferrocene and negatively charged Au nanoparticles onto a glassy carbon electrode has been developed for sensitive determination of hepatitis B surface antigen as a model protein.  相似文献   

9.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

10.
We report on a graphite electrode onto which polypyrrole was electrodeposited and then doped with chromate ion. This electrode can serve as a Cr(VI)-selective solid-state electrode. Electropolymerization of pyrrole was performed potentiostatically at 0.80?V (vs. SCE) using battery graphite as the working electrode in a solution containing 0.10?M of pyrrole and 20?mM of chromate. A platinum wire was used as an auxiliary electrode. The new electrode displays high selectivity, a very wide dynamic range, a sufficiently fast response time and a good shelf lifetime. It shows a linear Nernstian response over 1.0?×?10?6 to 1.0?×?10?1?M concentration range (with a slope of 26.55?±?0.20?mV per log of concentration). The detection limit is 0.5?μM, and the pH optimum is 7.0.
Figure
A highly selective solid state Cr(VI) ion-selective electrode based on polypyrrole conducting polymer was prepared. The introduced Cr(VI) micro sensor electrode exhibited linear response over a wide working concentration range with a high regression coefficient and a near Nernstian slope. The SEM image of PPy/CrO4 thin film shows unevenly distributed nanoparticles.  相似文献   

11.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

12.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

13.
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode (GCE). The substrate was characterized by scanning electron microscopy (SEM), X-ray diffraction, cyclic voltammetry and amperometry. SEM micrographs indicated an uniform coverage of the carbon nanotubes with nanosized (poly)crystalline gold. Cyclic voltammetry reveals that peak separation of the unmodified GCE in the presence of 1?mM ferricyanide is 131?mV, but 60?mV only for the modified GCE. In addition, the oxidation of NADH (1?mmol?L?1 solution) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV. The effect of pH on the electrocatalytic activity was studied in the range from 5.4 to 8.0. The relationship between the anodic peak potential and the pH indicated a variation of ?33.5?mV/pH which is in agreement with a two-electron and one-proton reaction mechanism. Amperometry, performed at either ?50 or +50?mV vs. an Ag/AgCl reference electrode, indicates that the modified electrode is a viable amperometric sensor for NADH. At a working potential of +50?mV, the response to NADH is linear in the concentration range from 1 to 100???mol?L?1, with an RSD of 6% (n?=?4).
Figure
Multiwalled carbon nanotubes with nanosized sputtered gold were used to modify a glassy carbon electrode. The oxidation of NADH (1?mmol?L?1) begins at negative potentials (around ?100?mV vs. Ag/AgCl), and the anodic peak potential (corresponding to the irreversible oxidation of NADH) is found at +94?mV.  相似文献   

14.
In the present work, we described the preparation of iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite (GR-MWCNTs/FeNPs) modified glassy carbon electrode (GCE) and its application for the sensitive determination of nitrite. First, GR-MWCNTs/FeNPs nanocomposite has been prepared by a simple solution-based approach via chemical reduction and then it was characterized. Afterwards, GR-MWCNTs/FeNPs/GCE was prepared and employed for the electrocatalysis of nitrite. Electrocatalytic oxidation of nitrite at the GR-MWCNTs/FeNPs/GCE has been significantly improved in terms of both reduction in overpotential and increase in peak current. Therefore, the modified electrode was employed for amperometric determination of nitrite which exhibited excellent analytical parameters with wide linear range of 1?×?10?7 M to 1.68?×?10?3 M and very low detection limit of 75.6 (±1.3)?nM. The proposed sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferrants. Good recoveries achieved for the determination of nitrite in various water samples reveal the promising practicality of the sensor. In addition, the sensor displays an acceptable repeatability and reproducibility along with appreciable storage and excellent operational stabilities.
Figure
Schematic representation for the preparation of GR-MWCNTs/FeNPs nanocomposite and its electrocatalysis towards nitrite  相似文献   

15.
We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a composite prepared from nickel(II) hydroxide nanoplates and carbon nanofibers. The nanocomposite was characterized by scanning electron microscopy and powder X-ray diffraction. Electrodes modified with pure Ni(OH)2 and with the nanocomposite were characterized by electrochemical impedance spectroscopy. Cyclic voltammetric and amperometric methods were used to investigate the catalytic properties of the modified electrodes for glucose electrooxidation in strongly alkaline solution. The sensor exhibits a wide linear range (from 0.001 to 1.2 mM), a low detection limit (0.76 μM), fast response time (< 5 s), high sensitivity (1038.6 μA?·?mM?1?·?cm?2), good reproducibility, and long operational stability. Application of the nonenzymatic sensor for monitoring glucose in real samples was also demonstrated.
Figure
We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite prepared from nickel (II) hydroxide nanoplates and carbon nanofibers. The facile preparation, high electrocatalytic activity, relatively fast response, favorable reproducibility and long-term performance stability demonstrate the potential applications of the sensor.  相似文献   

16.
Shuttle-like Fe2O3 nanoparticles (NPs) were prepared by microwave-assisted synthesis and characterized by scanning electron microscopy and X-ray diffraction. The NPs were immobilized on a glassy carbon electrode and then covered with dsDNA. The resulting electrode gives a pair of well-defined redox peaks for Pb(II) at pH 6.0, with anodic and cathodic peak potentials occurring at ?0.50?V and ?0.75?V (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.12 to 40?nM, and the detection limit is 0.1?nM at a signal-to-noise ratio of 3. The sensor exhibits high selectivity and reproducibility.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by dropping Fe2O3 NPs and double-strand DNA onto the pretreated glassy carbon electrode. The sensor had high sensitivety, high sensitivity, ease of construction and utilization for Pb(II) determination.  相似文献   

17.
We have prepared silver oxide nanoparticles (NPs) by a simple solution method using reducing agents in alkaline medium. The resulting NPs were characterized by UV–vis and FT-IR spectroscopy, X-ray powder diffraction, and field-emission scanning electron microscopy. They were deposited on a glassy carbon electrode to give a sensor with a fast response towards methanol in liquid phase. The sensor also displays good sensitivity and long-term stability, and enhanced electrochemical response. The calibration plot is linear (r 2?=?0.8294) over the 0.12?mM to 0.12?M methanol concentration range. The sensitivity is ~2.65?μAcm?2?mM?1, and the detection limit is 36.0?μM (at a SNR of 3). We also discuss possible future prospective uses of this metal oxide semiconductor nanomaterial in terms of chemical sensing.
Figure
Un-doped silver oxide NPs are prepared by solution method, which is a promising material in a wide range of environmental applications due to their attractive properties. It is characterized by UV/visible, Raman, FT-IR spectroscopy’s, powder X-ray diffraction, and FE-SEM and applied for the fabrication of sensitive methanol sensor in short response time. The analytical performances of this sensors with large-active surface area of Ag2O NPs/AgE have higher sensitivity, lower detection limit, long-term stability, and exhibit highly enhanced toxic chemicals in reliable I-V method.  相似文献   

18.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

19.
A glassy carbon electrode was modified with β-manganese dioxide (β-MnO2), and glucose oxidase (GOx) was immobilized on its surface. The β-MnO2 nanowires were prepared by a hydrothermal method and characterized by scanning electron microscopy and powder X-ray diffraction. They were then dispersed in Nafion solution and cast on the glassy carbon electrode (GCE) to form an electrode modified with β-MnO2 nanowires that exhibits improved sensitivity toward hydrogen peroxide. If GOx is immobilized in the surface, the β-MnO2 acts as a mediator, and Nafion as a polymer backbone. The fabrication process was characterized by electrochemical impedance spectroscopy, and the sensor and its materials were characterized by cyclic voltammetry and amperometry. The biosensor enables amperometric detection of glucose with a sensitivity of 38.2 μA?·?mM?1?·?cm?2, and a response time of?<?5 s. This study also demonstrates the feasibility of realizing inexpensive, reliable, and high-performance biosensors using MnO2 nanowires.
Figure
The sensitive determination of glucose was realized at a β-MnO2 NWs modified glassy carbon electrode by amperometry. The relatively fast, reproducible and low-cost manufacturing procedure suggests that it can offer an excellent platform for glucose oxidase-biosensing applications.  相似文献   

20.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号