首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new computerized method for locating conical intersections of interest in photochemistry is presented. The search is based on the Longuet-Higgins phase change theorem (Berry phase) which provides the subspace required for the initial search. The subspace is approximated as a plane containing three stable structures lying on a Longuet-Higgins loop. The search is conducted for a minimum of ΔE, the energy difference between two electronic states. It is started using up to three points within the circle defined by the three structures; symmetry, if relevant, is helpful but not essential. Since a two-dimensional subspace of the large 3N − 6 space is used, the search that uses either Cartesian or internal coordinates is efficient and yields a degeneracy after a few iterations. Given that not all degrees of freedom are included in the search, usually a high lying part of the conical intersection is initially located. The system is subsequently optimized along all coordinates keeping ΔE as close to zero as desired. The method is demonstrated for the symmetric H3 system and also for the butadiene–cyclobutene–bicyclobutane system in which the three stable structures are not equivalent. The method is general and can be extended to any photochemical system.  相似文献   

2.
High fatigue-resistant photochromic dithienylethenes were synthesized by controlling the oxidation state of 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene (BTF6) and 1,2-bis(2,5-dimethylthien-3-yl)perfluorocyclopentene (DMTF6).  相似文献   

3.
Two photochromic coumarin-based dithienylethenes were synthesized by one-pot nucleophilic addition reaction of alkyne and phenol. Both diarylethenes exhibited reversible photochromism, but their conformation played an important role in their photochromic properties. The derivative with high conjugation degree showed switchable fluorescence, providing a valuable reference for design of novel photochromic diarylethenes.  相似文献   

4.
Four photochromic dithienylethene compounds, 1,2-bis(2-methyl-5-naphthalene-3-thienyl)perfluorocyclopentene 1a, 1,2-bis[2-methyl-5(p-fluorophenyl)-3-thienyl]perfluorocyclopentene 2a, 1,2-bis[2-methyl-5(p-ethoxyphenyl)-3-thienyl]perfluorocyclopentene 3a, and 1,2-bis[2-methyl-5(p-N,N-dimethylaminophenyl)-3-thienyl]perfluorocyclopentene 4a were synthesized, and their optoelectronic properties, such as photochromism in solution as well as in poly-methylmethacrylate (PMMA) amorphous films, fluorescences and electrochemical properties were investigated in detail. These dithienylethenes have shown good photochromic behavior both in solution and in PMMA amorphous film. All of them exhibited relatively strong fluorescence and gave a bathochromic shift upon increasing concentration in THF. The irreversible anodic oxidation of 1a, 2a and 4a was observed by performing cyclic voltammetry experiments.  相似文献   

5.
The molecular mechanism for the cycloreversion of oxetane radical cations has been studied at the UB3LYP/6-31G* level. Calculations support that the cycloreversion takes place via a concerted but asynchronous process, where C-C bond breaking at the transition state is more advanced than O-C breaking. This allows a favorable rearrangement of the spin electron density from the oxetane radical cation (with the spin density located mainly on the oxygen atom) to the alkene radical cation which is one of the final products. Inclusion of solvent effects does not modify the gas-phase results.  相似文献   

6.
A parametrization of the three asymptotic conical intersections between the energies of the H3(+) ground state and the first excited singlet state is presented. The influence of an additional, fourth conical intersection between the first and second excited states at the equilateral geometry on the connection between the three conical regions is studied, for both diatomics-in-molecules and ab initio molecular data.  相似文献   

7.
Using multireference configuration interaction expansions comprised of over 7 million configuration state functions, three-state conical intersections are reported for the closely spaced, spectroscopically observed (tilde)B(2A1), (tilde)C(2B1), and (tilde)D(2B2) states (in C(2v) symmetry) of the allyl radical. These conical intersections of states which were previously assigned as the 3,4,5(2)A states and are here reassigned as the 4,5,6(2)A states, are expected to be accessible using optical probes. This conclusion is obtained from the structure of the minimum energy point on the 4,5,6(2)A three-state conical intersection seam which is similar to the equilibrium structure of the ground (tilde)X(2A2) state and only 1.1 eV above the (tilde)D(2B2) state at its equilibrium geometry. The seam of three-state degeneracies joins two two-state seams of conical intersection, the 4,5(2)A and 5,6(2)A conical intersection seams. The energy of the minimum energy point on the 4,5(2)A two-state seam is only 0.15 eV above that of the (tilde)D(2B2) state at its equilibrium structure. Three-state intersections are also reported for the 3,4,5(2)A states.  相似文献   

8.
[reaction: see text]. Electrochemical oxidation of diarylethene derivatives induced cyclization or cycloreversion reactions. The reaction mechanism was studied with CV, absorption spectra, and theoretical calculation.  相似文献   

9.
In this article are considered the conical intersections (ci's) related to the N-H bond in the methylamine, CH(3)NH(2), molecule. The novel feature that was revealed is that the two lowest states 1A(') and 1A(") are coupled by a line of cis located in HC-NHH plane-a line that is formed by moving a single hydrogen on that plane while fixing the (six) other atoms. The validity of this line was proven first by studying the singularities of the (angular) nonadiabatic coupling terms and then by revealing the degeneracy points formed by the two interacting adiabatic potential energy surfaces (PESs). A theoretical analysis indicated that the line has to be a finite closed line. We also calculated the Berry phase for a contour that surrounds this line and found it to be 3.127 rad, namely, a value reasonably close to pi. The existence of such lines of cis-instead of isolated cis (as exhibited by other n-atomic (n>3) molecules such as HNCO or C(2)H(2))-may enhance significantly the transition rate from an upper adiabatic state to a lower one. There are also numerical advantages in such situations, that is, if such a line is properly placed in that plane (like in the present case) the wave-packet treatment of the nuclei can be carried out employing a single diabatic PES instead of having to consider two coupled PESs.  相似文献   

10.
Topographical exploration of nonadiabatically coupled ground- and excited-electronic-state potential energy surfaces (PESs) of the isolated RDX molecule was performed using the ONIOM methodology: Computational results were compared and contrasted with the previous experimental results for the decomposition of this nitramine energetic material following electronic excitation. One of the N-NO(2) moieties of the RDX molecule was considered to be an active site. Electronic excitation of RDX was assumed to be localized in the active site, which was treated with the CASSCF algorithm. The influence of the remainder of the molecule on the chosen active site was calculated by either a UFF MM or RHF QM method. Nitro-nitrite isomerization was predicted to be a major excited-electronic-state decomposition channel for the RDX molecule. This prediction directly corroborates previous experimental results obtained through photofragmentation-fragment detection techniques. Nitro-nitrite isomerization of RDX was found to occur through a series of conical intersections (CIs) and was finally predicted to produce rotationally cold but vibrationally hot distributions of NO products, also in good agreement with the experimental observation of rovibrational distributions of the NO product. The ONIOM (CASSCF:UFF) methodology predicts that the final step in the RDX dissociation occurs on its S(0) ground-electronic-state potential energy surface (PES). Thus, the present work clearly indicates that the ONIOM method, coupled with a suitable CASSCF method for the active site of the molecule, at which electronic excitation is assumed to be localized, can predict hitherto unexplored excited-electronic-state PESs of large energetic molecules such as RDX, HMX, and CL-20. A comparison of the decomposition mechanism for excited-electronic-state dimethylnitramine (DMNA), a simple analogue molecule of nitramine energetic materials, with that for RDX, an energetic material, was also performed. CASSCF pure QM calculations showed that, following electronic excitation of DMNA to its S(2) surface, decomposition of this molecule occurs on its S(1) surface through a nitro-nitrite isomerization producing rotationally hot and vibrationally cold distributions of the NO product.  相似文献   

11.
The photophysics of the pyrene radical cation, a polycyclic aromatic hydrocarbon (PAH) and a possible source of diffuse interstellar bands (DIBs), is investigated by means of hybrid molecular mechanics-valence bond (MMVB) force field and multiconfigurational CASSCF and CASPT2 ab initio methods. Potential energy surfaces of the first three electronic states D 0, D 1, and D 2 are calculated. MMVB geometry optimizations are carried out for the first time on a cationic system; the results show good agreement with CASSCF optimized structures, for minima and conical intersections, and errors in the energy gaps are no larger than those found in our previous studies of neutral systems. The presence of two easily accessible sloped D 1/D 2 and D 0/D 1 conical intersections suggests the pyrene radical cation is highly photostable, with ultrafast nonradiative decay back to the initial ground state geometry predicted via a mechanism similar to the one found in the naphthalene radical cation.  相似文献   

12.
The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(?+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(?+) (ii). Calculations support that 1a(?+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(?+) follows pathway i, leading to trans-stilbene radical cation (2b(?+)) and thiobenzophenone.  相似文献   

13.
Multiconfigurational second-order perturbation theory, both in its single-state multiconfigurational second-order perturbation theory (CASPT2) and multistate (MS-CASPT2) formulations, is used to search for minima on the crossing seams between different potential energy hypersurfaces of electronic states in several molecular systems. The performance of the procedures is tested and discussed, focusing on the problem of the nonorthogonality of the single-state perturbative solutions. In different cases the obtained structures and energy differences are compared with available complete active space self-consistent field and multireference configuration interaction solutions. Calculations on different state crossings in LiF, formaldehyde, the ethene dimer, and the penta-2,4-dieniminium cation illustrate the discussions. Practical procedures to validate the CASPT2 solutions in polyatomic systems are explored, while it is shown that the application of the MS-CASPT2 procedure is not straightforward and requires a careful analysis of the stability of the results with the quality of the reference wave functions, that is, the size of the active space.  相似文献   

14.
用量子化学从头计算方法, 研究了Ti8C12分别与H2O, C2H4作用形成Ti8C12(H2O)8, Ti8C12(C2H4)4的反应。计算结果表明, 在Ti8C12(H2O)8中, 电子由H2O向Ti8C12转移, 在Ti8C12(C2H4)4中, 电子由Ti8C12向C2H4转移。从Ti8C12生成Ti8C12(H2O)8能量降低, 稳定性增加, 生成Ti8C12(C2H4)4能量升高, 稳定性减小。  相似文献   

15.
16.
We have studied the photoinduced isomerization from 1,3-cyclohexadiene to 1,3,5-hexatriene in the presence of an intense ultrafast laser pulse. We find that the laser field maximally suppresses isomerization if it is both polarized parallel to the excitation dipole and present 50 fs after the initial photoabsorption, at the time when the system is expected to be in the vicinity of a conical intersection that mediates this structural transition. A modified ab initio multiple spawning (AIMS) method shows that the laser induces a resonant coupling between the excited state and the ground state, i.e., a light-induced conical intersection. The theory accounts for the timing and direction of the effect.  相似文献   

17.
18.
The reaction of 2,5-dimethylthiophen-3-ylacetic acid with 2,5-dimethylthiophen-3-ylacetyl chloride gave 3,4-bis(2,5-dimethylthiophen-3-yl)furan-2(5H)-one which was converted into a series of 5-methylidene and 5-arylmethylidene derivatives.  相似文献   

19.
Femtosecond time-resolved photoelectron spectroscopy and high-level theoretical calculations were used to study the effects of methyl substitution on the electronic dynamics of the alpha,beta-enones acrolein (2-propenal), crotonaldehyde (2-butenal), methylvinylketone (3-buten-2-one), and methacrolein (2-methyl-2-propenal) following excitation to the S2(pipi*) state at 209 and 200 nm. We determine that following excitation the molecules move rapidly away from the Franck-Condon region, reaching a conical intersection promoting relaxation to the S1(npi*) state. Once on the S1 surface, the trajectories access another conical intersection, leading them to the ground state. Only small variations between molecules are seen in their S2 decay times. However, the position of methyl group substitution greatly affects the relaxation rate from the S1 surface and the branching ratios to the products. Ab initio calculations used to compare the geometries, energies, and topographies of the S1/S0 conical intersections of the molecules are not able to satisfactorily explain the variations in relaxation behavior. We propose that the S1 lifetime differences are caused by specific dynamical factors that affect the efficiency of passage through the S1/S0 conical intersection.  相似文献   

20.
High-level ab initio calculations show that the singlet photochemical cis-trans isomerization of organic molecules under isolated conditions can occur according to two distinct mechanisms. These mechanisms are characterized by the different structures of the conical intersection funnels controlling photoproduct formation. In nonpolar (e.g. hydrocarbon) polyenes the lowest-lying funnel corresponds to a (CH)3 kink with both double and adjacent single bonds twisted, which may initiate hula-twist (HT) isomerization. On the other hand, in polar conjugated systems such as protonated Schiff bases (PSB) the funnel shows a structure with just one twisted double bond. The ground-state relaxation paths departing from the funnels indicate that the HT motion may take place in nonpolar conjugated systems but also that the single-bond twist may be turned back, whereas in free conjugated polar molecules such as PSB a one-bond flip mechanism dominates from the beginning. The available experimental evidence either supports these predictions or is at least consistent with them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号