首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

2.
Phospholipid membranes are ubiquitous components of cells involved in physiological processes; thus, knowledge regarding their interactions with other molecules, including tocopherol ester derivatives, is of great importance. The surface pressure–area isotherms of pure α-tocopherol (Toc) and its derivatives (oxalate (OT), malonate (MT), succinate (ST), and carbo analog (CT)) were studied in Langmuir monolayers in order to evaluate phase formation, compressibility, packing, and ordering. The isotherms and compressibility results indicate that, under pressure, the ester derivatives and CT are able to form two-dimensional liquid-condensed (LC) ordered structures with collapse pressures ranging from 27 mN/m for CT to 44 mN/m for OT. Next, the effect of length of ester moiety on the surface behavior of DPPC/Toc derivatives’ binary monolayers at air–water interface was investigated. The average molecular area, elastic modulus, compressibility, and miscibility were calculated as a function of molar fraction of derivatives. Increasing the presence of Toc derivatives in DPPC monolayer induces expansion of isotherms, increased monolayer elasticity, interrupted packing, and lowered ordering in monolayer, leading to its fluidization. Decreasing collapse pressure with increasing molar ratio of derivatives indicates on the miscibility of Toc esters in DPPC monolayer. The interactions between components were analyzed using additivity rule and thermodynamic calculations of excess and total Gibbs energy of mixing. Calculated excess area and Gibbs energy indicated repulsion between components, confirming their partial mixing. In summary, the mechanism of the observed phenomena is mainly connected with interactions of ionized carboxyl groups of ester moieties with DPPC headgroup moieties where formed conformations perturb alignment of acyl chains, resulting in increasing mean area per molecule, leading to disordering and fluidization of mixed monolayer.  相似文献   

3.
 The surface activity of HAV-VP3(110–121) peptide was studied at different concentrations in an aqueous solution. Saturation was reached at 0.62 μM concentration. The ability of the peptide to insert into monolayers of CL, SA, DPPC, DPPC/5% CL and DPPC/5% SA was also performed. Mixed mono-layers composed of this peptide and the lipid mixtures were also studied as far as the miscibility of the two components is concerned. The mixed monolayers showing small negative deviations from ideality. The values of excess free energy of mixing (ΔG E M) suggest that the energy associated to the miscibility process is almost non-significant except for a 0.2 molar fraction of DPPC/SA and 0.6 molar fraction of DPPC/CL. The peptide has an expanding effect upon the monolayers but due to its amphoteric character this interaction is not dependent on the electrical charge of the lipids. In fluorescence studies, the peptide showed some degree of interaction with the lipid polar heads, but no interactions were detected with its alkylchains. This results show that after incubation with DPPC/5% CL and DPPC/5% SA liposomes the peptide remains in the outer part of the bilayers. Received: 20 January 1997 Accepted: 28 May 1997  相似文献   

4.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

5.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

6.
Mixed monolayers of an acylated derivative of hepatitis A synthetic peptide VP3(110-121) with neutral, cationic or anionic lipids were spread at the air/water interface. Deviations from ideality as well as thermodynamic values were calculated at different surface pressures using the free-excess energy, the interaction parameter and the enthalpy. The miscibility at the collapse point was also checked. Maximum deviations from ideality were found for mixtures containing the anionic lipid phosphatidylglycerol (PG), and it seems that the monolayer composition is not stable through compression, as the peptide is ejected from the film. Films containing neutral [dipalmitoylphosphatidylcholine (DPPC)] or cationic [stearylamine (SA)] lipids showed more regular behaviour. As the peptide has a net negative charge it is probable that electrostatic interactions are in part responsible of the good miscibility of palmitoyl VP3(110-121) with SA. In order to prepare liposomes containing palmitoyl VP3(110–121), lipids such as SA or DPPC/SA will be a more suitable choice than anionic lipids such as PG. Received: 26 May 2000 Accepted: 22 September 2000  相似文献   

7.
The miscibility of per-(6-amino-2,3-di-O-hexyl) β-CD hydrochloride salt abbreviated NH3-β-CD-OC6 with 1,2 dipalmitoyl, 3-sn-phosphatidyl choline (DPPC) and 1,2 dipalmitoyl, 3-sn-phosphatidic acid (DPPA) and of per-(6-dodecanoylamino-6-deoxy) β-CD abbreviated C11CONH-β-CD with DPPC has been assessed by surface pressure–area experiments under dynamic conditions. The determination of their mixing behavior has been approached by thermodynamic characterization derived from a comparison of the composition dependence of collapse pressure, for various contents of two components in monolayers, with that predicted from a model of ideal mixing. Component miscibility has additionally been addressed by the use of the Smaby–Brockman state equation for liquid-expanded monolayers which characterizes interaction between monolayer components using the water activity coefficient. While for both NH3-β-CD-OC6–DPPC and NH3-β-CD-OC6–DPPA systems the average surface areas followed the additivity rule, for the latter system surface pressures at collapse significantly deviated from ideality. The occurrence of an interaction at the level of oppositely charged polar groups of NH3-β-CD-OC6 and DPPA was also demonstrated by the nonideal composition dependence of the water activity coefficient (f1) characterizing the interfacial water. The mixing energies and interaction parameters at collapse pressures were calculated using the Joos approach. Positive values of these factors indicated that NH3-β-CD-OC6 and DPPA mixed films were thermodynamically less stable than the films in which ideal mixing of components occurred. The mixing of NH3-β-CD-OC6 with DPPC appeared to be almost ideal. In the case of the C11CONH-β-CD–DPPC system, analysis according to both the Joos and Goodrich approaches showed the occurrence of an important interaction which resulted in negative mixing energies characteristic of thermodynamically stable mixed films.  相似文献   

8.
Mixtures of biodegradable polymers, poly(dl-lactide) and poly(ε-caprolactone) monolayers at the air/water interface have been studied. Surface pressure-area isotherms of poly(dl-lactide), poly(ε-caprolactone) and their mixtures were obtained by monolayer compression at constant temperature. The behavior of the mixed monolayers was analyzed according to the classical addition rule. Good agreement was observed between experimental and ideal behavior except for one composition where a negative deviation was observed. The polymer monolayer miscibility was corroborated by comparison between the surface pressure-area isotherms of the random copolymers (dl-lactide-co-ε-caprolactone) and their mixtures at the same compositions. Brewster angle microscopy (BAM) shows homogeneity in the monolayers in the whole range of compositions. These results also confirm the miscibility of the mixtures.  相似文献   

9.
In this work, surface film balance and Brewster angle microscopy techniques have been used to analyze the structural characteristics (structure, topography, reflectivity, thickness, miscibility, and interactions) of hydrolysates from sunflower protein isolate (SPI) and dipalmitoylphosphatidylcholine (DPPC) mixed monolayers spread on the air-water interface. The degree of hydrolysis (DH) of SPI, low (5.62%), medium (23.5%), and high (46.3%), and the protein/DPPC mass fraction were analyzed as variables. The structural characteristics of the mixed monolayers deduced from the surface pressure (pi)-area (A) isotherms depend on the interfacial composition and degree of hydrolysis. At surface pressures lower than the equilibrium surface pressure of SPI hydrolysate (pi(e)(SPI hydrolysate)), both DPPC and protein are present in the mixed monolayer. At higher surface pressures (at pi > pi(e)(SPI hydrolysate)), collapsed protein residues may be displaced from the interface by DPPC molecules. The differences observed between pure SPI hydrolysates and DPPC in reflectivity (I) and monolayer thickness during monolayer compression have been used to analyze the topographical characteristics of SPI hydrolysates and DPPC mixed monolayers at the air-water interface. The topography, reflectivity, and thickness of mixed monolayers confirm at microscopic and nanoscopic levels the structural characteristics deduced from the pi-A isotherms.  相似文献   

10.
The investigation of the characteristics of mixed floating monolayers of phospholipids and usnic acid (UA), an active metabolite from lichens, can provide valuable information on how to prepare stable liposomes that could serve as carriers of UA for therapeutic proposes. The present paper is concerned with the thermodynamic analysis of the behavior of Langmuir monolayers formed by mixing different phospholipids (dibehenoylphosphatidylcholine, DBPC, dipalmitoylphosphatidylcholine, DPPC, and dioleoylphosphatidylcholine, DOPC) and UA at varied molar fractions. Relevant thermodynamic parameters such as excess areas, excess free energies and free energy of mixing were derived from the surface pressure data obtained from compression measurements performed in a Langmuir trough. For the largest lateral pressure examined (25 mN/m), negative values of the excess free energy were found only for the DOPC/UA monolayer, which should be the most stable of them. Based on the calculated values of the free energy of mixing, we note that the DBPC/UA and DPPC/UA systems present the best mixed character at low pressures and when the molar fraction of the UA is 0.5; at that relative concentration and at low values of the external pressure, the UA molecules can better mix and interact with the phospholipid molecules. The compression isotherms for mixed monolayers show no visible transitions, exhibiting a more organized phase that corresponds to a negative free energy of mixing. We have established that the most stable monolayers were those corresponding to DOPC/UA mixtures with a UA molar fraction of 0.75.  相似文献   

11.
The interactions of mixed monolayers of two lipids, zwitterionic 1,2-dipalmitoyl-phosphatidylcholine (DPPC) and positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), with phytohormone indolilo-3-acetic acid (IAA) and selenate anions in the aqueous subphase were studied. For this purpose, isotherms of the surface pressure versus the mean molecular area were recorded. Domain formation was investigated by using Brewster angle microscopy (BAM). The method of grazing incidence X-ray diffraction (GIXD) was also applied for the characterization of the organization of lipid molecules in condensed monolayers. It was found that selenate ions contribute to monolayer condensation by neutralizing the positive net charge of mixed monolayers whereas IAA molecules penetrated the lipid monolayer, causing its expansion/fluidization. When both solutes were introduced into the subphase, a competition between them for interaction with the positively charged lipids in the monolayer was observed.  相似文献   

12.
黄酮类化合物广泛存在于植物中,具有抗氧化、抗肿瘤和抗病毒等多种生物活性[1-3]。许多研究表明,具有相同苷元的黄酮类化合物比其糖苷具有更优秀的抗氧化活性,这是由于苷元亲脂性强能嵌入生物膜流水层的内核发挥作用,以及糖基的空间位阻减弱了黄酮化合物和生物分子的结合能力[4  相似文献   

13.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.  相似文献   

14.
This study investigated the thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface at 37°C. Surface pressure–area isotherms and relaxation curves for the mixed monolayers were obtained by using a computer-controlled film balance. In the thermodynamic analysis of the mixed monolayers, the areas of monolayers exhibited negative deviations from the ideal values at all compositions for lower surface pressures. However, at higher surface pressures, distinctively positive deviations from ideality were observed at lower DPPC contents. Excess free energies of mixing had been calculated and the most stable state of the mixed monolayer with xDPPC=0.5 or 0.6 was found. Moreover, the relaxation kinetics of the mixed monolayers was investigated by measuring the surface area as a function of time at a constant surface pressure of 40 mN m−1. It was shown that the relaxation processes could be described by the models considering nucleation and growth mechanisms.  相似文献   

15.
The detailed miscibility analysis of binary phospholipid monolayers requires the application of a variety of spreading and surface techniques which often yield complementary results. Testing the equilibrium state of the binary monolayer by long-time experiments is also of great importance. Studies of the compression and spreading behavior of binary monomolecular systems form a basis for the determination of binary monomolecular phase diagrams. Within these plots different phase regions occur which permit clear statements regarding the miscibility state. Additional knowledge of the miscibility properties (phase diagrams) of the binary bulk systems is required. From the analogy of the properties of the bulk systems, the miscibility state of the monolayers is also determined by the temperature, and we can classify the monolayers of binary lecithin and cephalin systems into systems of complete miscibility, partial miscibility and complete immiscibility. In addition to the differences in the chemical structure of the mixing components, the film states in the monolayer and the miscibility behavior of the bulk systems are also influencing factors. If one of the components does not produce a spreading pressure, miscibility gaps occur in the phase diagram of the phospholipid monolayer. The miscibility gap, expressed by a constant spreading pressure, indicates complete immiscibility within this concentration range. If both components produce spreading pressures, and condensed and liquid-expanded film states within the considered temperature range, partial miscibility of the components becomes probable. The most effective parameter is then the difference in the chemical structure of the components. When both components produce spreading pressures and condensed films, the chemical structure of the mixing phospholipid compounds within their hydrophilic and hydrophobic parts is of essential importance. Depending on the differences in the chemical structures of their chains and their head groups in the case of binary phospholipid monolayers, the following possibilities result: complete miscibility, partial miscibility and complete immiscibility of the lecithins and the cephalins. Complete miscibility within the binary phospholipid monolayer takes place in the case of identical head-group structure and where there are only small differences in the chain length of the fatty acid groups. With increasing hydrocarbon chain length differences, partial miscibility or even complete immiscibility can occur within the monolayer. Chemical differences in the head-group structure of the mixing components have a similar influence. In the case of binary lecithin/cephalin mixtures, the differences in the head-group structure affect the miscibility behavior more than the chain length differences do in the case of lecithin/lecithin and cephalin/cephalin mixtures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In this study, we investigated the interaction of fengycin, a lipopeptide produced by Bacillus subtilis, with lipid monolayers using the Langmuir trough technique in combination with Brewster angle microscopy. Thermodynamic analyses were performed to get further information about the mixing behavior and the molecular interactions between the two components. The effect of fengycin on the structural and morphological characteristics of DPPC monolayers, as a simple model of biological membranes, depends on the fengycin molar ratio. With a small proportion of fengycin (X(f)0.1), the compressibility of the monolayer is modified but the morphological characteristics of the DPPC are not significantly affected. At an intermediate molar ratio (0.1相似文献   

17.
In pulmonary tuberculosis, Mycobacterium tuberculosis bacteria reside in the alveoli and are in close proximity with the alveolar surfactant. Mycolic acid in its free form and as cord factor, constitute the major lipids of the mycobacterial cell wall. They can detach from the bacteria easily and are known to be moderately surface active. We hypothesize that these surface-active mycobacterial cell wall lipids could interact with the pulmonary surfactant and result in lung surfactant dysfunction. In this study, the major phospholipid of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and binary mixtures of DPPC:phosphatidylglycerol (PG) in 9:1 and 7:3 ratios were modelled as lung surfactant monolayers and the inhibitory potential of mycolic acid and cord factor on the surface activity of DPPC and DPPC:PG mixtures was evaluated using Langmuir monolayers. The mycobacterial lipids caused common profile changes in all the isotherms: increase in minimum surface tension, compressibility and percentage area change required for change in surface tension from 30 to 10 mN/m. Higher minimum surface tension values were achieved in the presence of mycolic acid (18.2 ± 0.7 mN/m) and cord factor (13.28 ± 1.2 mN/m) as compared to 0 mN/m, achieved by pure DPPC film. Similarly higher values of compressibility (0.375 ± 0.005 m/mN for mycolic acid:DPPC and 0.197 ± 0.003 m/mN for cord factor:DPPC monolayers) were obtained in presence of mycolic acid and cord factor. Thus, mycolic acid and cord factor were said to be inhibitory towards lung surfactant phospholipids. Higher surface tension and compressibility values in presence of tubercular lipids are suggestive of an unstable and fluid surfactant film, which will fail to achieve low surface tensions and can contribute to alveolar collapse in patients suffering from pulmonary tuberculosis. In conclusion a biophysical inhibition of lung surfactant may play a role in the pathogenesis of tuberculosis and may serve as a target for the development of new drug loaded surfactants for this condition.  相似文献   

18.
Fluorocarbon alcohol such as 10-(perfluorohexyl)-decanol are of interest for novel pulmonary drug delivery approaches. The purpose of this study was to investigate the mixing behavior of 10-(perfluorohexyl)-decanol with dipalmitoylphosphatidylcholine (DPPC), the major component of lung surfactant as an aid in assessing usefulness for this and other biomedical applications. The impact of 10-(perfluorohexyl)-decanol on the phase transitions of DPPC bilayers fully hydrated with a 0.15 M sodium chloride solution were studied using differential scanning calorimetry (DSC). No peak corresponding to excess alcohol was observed. The fluorinated alcohol caused DPPC peak broadening, especially below X(DPPC) < 0.95, and elimination of the pretransition of DPPC at X(DPPC) approximately 0.91. The onset of the main phase transition remains constant down to X(DPPC) approximately 0.91, suggesting limited miscibility in the gel phase. Hydration of the 10-(perfluorohexyl)-decanol-DPPC mixtures with calcium chloride (2 mM) in place of sodium chloride did not alter the macroscopic phase behavior. In addition to the thermal properties, the miscibility of 10-(perfluorohexyl)-decanol in DPPC in monolayers at the air water interface was investigated on water, sodium chloride (0.15 M), calcium chloride (2 mM) or hydrochloric acid (pH 1.9) subphases. The concentration dependence of the onset pressure of the liquid-expanded to liquid condensed phase transition of DPPC showed a slight change with increasing mole fraction on all four subphases. The surface area-mole fraction diagrams of 10-(perfluorohexyl)-decanol and DPPC on water, sodium chloride and calcium chloride showed near ideal behavior with slight negative deviations at higher surface pressure. A more significant negative deviation was observed for the hydrochloric acid subphase. Overall, both the DSC and the monolayer studies suggest that 10-(perfluorohexyl)-decanol and DPPC are partially miscible in biological mono- and bilayers. The macroscopic phase behavior 10-(perfluorohexyl)-decanol-DPPC system is significantly different from the analogous hydrocarbon system, which is attributed to a less favorable packing of the partially fluorinated hydrophobic tails in the mono- and bilayer.  相似文献   

19.
The surface pressure (π)– and the surface potential (ΔV)–area (A) isotherms were obtained for two-component monolayers of four different perfluorocarboxylic acids (FCns; perfluorododecanoic acid: FC12, perfluorotetradecanoic acid: FC14, perfluorohexadecanoic acid: FC16, perfluorooctadecanoic acid: FC18) with dipalmitoylphosphatidylcholine (DPPC) on substrate solution of 0.15 M NaCl (pH 2.0) at 298.2 K as a function of compositions in the mixtures by employing the Wilhelmy method, the ionizing electrode method, the fluorescence microscopy, and the atomic force microscopy. The data for the two-component monolayers on these systems were analyzed in terms of the additivity rule. Assuming a regular surface mixture, the Joos equation which allows one to describe the collapse pressure of a two-component monolayer with miscible components was used to declare the miscibility of the monolayer state, and an interaction parameter and an interaction energy were calculated. The new finding was that FCns and DPPC are miscible or immiscible depending on chain length increment of fluorocarbon part. That is, FC12/DPPC monolayer was perfectly miscible, and FC14/DPPC, and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) monolayers were partially miscible. While FC16/DPPC (0.3 < XFC16 < 1) and FC18/DPPC systems are immiscible in the monolayer state. Furthermore, the mean molecular area, the surface dipole moment, and the phase diagrams enabled us to estimate the molecular orientation of four different perfluorocarboxylic acids/DPPC in the two-component monolayer state. One type of phase diagrams was obtained and classified into the positive azeotropic type. The miscibility of FCns and DPPC in the monolayer was also supported by fluorescence microscopy and atomic force microscopy. FC12/DPPC, FC14/DPPC and FC16/DPPC (0 ≤ XFC16 ≤ 0.3) two-component monolayers on 0.15 M NaCl (pH 2) showed that FC12, FC14 and FC16 (0 ≤ XFC16 ≤ 0.3) can dissolve or partially dissolve the ordered solid DPPC domains formed upon compression. This indicates that these fluorinated amphiphiles soften or harden the lipid depending on their chain length.  相似文献   

20.
Adsorption of fibrinogen to the monolayers of mixed lipids, dipalmitoyl phosphatidyl choline (DPPC) and eicosylamine (EA) was measured at a surface pressure of 20 mN/m by an in situ surface plasmon resonance technique. Pressure–area isotherms of DPPC + EA mixtures on water and buffer subphases indicated good lipid miscibility and some contraction of the monolayers at intermediate and higher surface pressures. Surface electric potential of the DPPC + EA monolayers showed excess values for intermediate DPPC:EA ratios. Fibrinogen adsorption and its adsorption rates from a dilute solution (0.03 mg/ml) were proportional to the fraction of EA in the monolayer indicating that protein binding was primarily driven by electrostatic interactions between positive EA charges in the monolayer and a net negative protein charge. At a higher protein concentration (0.06 mg/ml) both the fibrinogen adsorbed amount and its maximum adsorption rate showed excess values relative to the pure EA for 1:1, 2:1 and 3:1 DPPC + EA monolayers. This excess adsorption could be explained, in part, by the contraction of the monolayers with intermediate DPPC:EA ratios which resulted in an excess surface electric potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号