首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or -amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 × 10−6 M and a linear concentration range of 0.01–3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another ( -amino acid) sensor gave a detection limit of 3 × 10−5 M -alanine, injected with a linear concentration range of 7.0 × 10−5-1.4 × 10−2 M. Glucose and -amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.  相似文献   

2.
In this work, we demonstrate for the first time that 4-methyl-5-nitrocatechol (4M5NC) and 2,4,5-trihydroxytoluene (2,4,5-THT), two compounds obtained from the 2,4-DNT biodegradation are recognized by polyphenol oxidase as substrates. An amperometric biosensor is described for detecting these compounds and for evaluating the efficiency of the 2,4-DNT conversion into 4M5NC in the presence of bacteria able to produce the 2,4-DNT-biotransformation. The biosensor format involves the immobilization of polyphenol oxidase into a composite matrix made of glassy carbon microspheres and mineral oil. The biosensor demonstrated to be highly sensitive for the quantification of 4M5NC and 2,4,5-THT. The analytical parameters for 4M5NC are the following: sensitivity of (7.5 ± 0.1) × 105 nAM−1, linear range between 1.0 × 10−5 and 8.4 × 10−5 M, and detection limit of 4.7 × 10−6 M. The sensitivity for the determination of 2,4,5-THT is (6.2 ± 0.6) × 106 nAM−1, with a linear range between 1.0 × 10−6 and 5.8 × 10−6 M, and a detection limit of 2.0 × 10−7. Under the experimental conditions, it was possible to selectively quantify 4M5NC even in the presence of a large excess of 2,4-DNT. The suitability of the biosensor for detecting the efficiency of 2,4-DNT biotransformation into 4M5NC is demonstrated and compared with HPLC-spectrophotometric detection, with very good correlation. This biosensor holds great promise for decentralized environmental testing of 2,4-DNT.  相似文献   

3.
A new spectrophotometric flow-injection (FI) method is proposed for the determination of glucose based on the redox reaction of hydroquinone with iron(III). When a glucose solution containing quinone is passed through the immobilized glucose oxidase column introduced in FI system, quinone is reduced to hydroquinone by glucose. In the presence of 1,10-phenanthroline (phen), iron(III) is then quantitatively reduced by hydroquinone to iron(II) followed by the formation of iron(II)-phen complex (λmax=510 nm). An FI peak observed at 510 nm corresponds to the concentration of glucose. The wide dynamic range for glucose was obtained in the range of 1×10−6–1×10−3 mol l−1 at a sampling rate of 24 h−1 and the detection limit (S/N=3) was 5×10−7 mol l−1. Relative standard deviations were 0.78, 0.44 and 0.23% (n=5) for 5×10−6, 5×10−5 and 5×10−4 mol l−1 of glucose, respectively. The proposed method was successfully applied to the determination of glucose in control blood sera, human blood plasma and wine.  相似文献   

4.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

5.
A glucose biosensor with enzyme immobilised by sol–gel technology was constructed and evaluated. The glucose biosensor reported is based on encapsulated GOX within a sol–gel glass, prepared with 3-aminopropyltriethoxy silane, 2-(3,4-epoxycyclohexyl)-ethyltrimetoxy silane and HCl. A flow system incorporating the amperometric biosensor constructed was developed for the determination of glucose in the 1×10−4–5×10−3 mol l−1 range with a precision of 1.5%. The results obtained for the analysis of electrolytic solution for iv administration and human serum samples showed good agreement between the proposed method and the reference procedure, with relative error <5%.  相似文献   

6.
Reartes GB  Liberman SJ  Blesa MA 《Talanta》1987,34(12):1039-1042
The acidity constants of benzidine (Bz) in aqueous solutions determined potentiometrically at 25° were Ka1 = (1.11 ± 0.08) × 10−5, Ka2 = (1.45 ± 0.12) × 10−4. The apparent mixed constants in 0.1M sodium nitrate are Ka1 = (5.37 ± 0.28) × 10−6 and Ka2 = (1.14 ± 0.09) × 10−4. The ultraviolet spectra were recorded as a function of pH and analysed with these constants to obtain the absorption spectra of H2Bz2+, HBz+ and Bz; the corresponding wavelengths of maximal absorption are 247, 273 and 278 nm, and molar absorptivities 1.63 × 104, 1.76 × 104 and 2.26 × 104 1.mole−1.cm−1.  相似文献   

7.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

8.
Pei J  Li XY 《Talanta》2000,51(6):2379-1115
A thin film of mixed-valent CuPtCl6 is deposited on a glassy carbon electrode by continuous cyclic scanning in a solution containing 3×10−3 M CuCl2+3×10−3 M K2PtCl6+1 M KCl in the potential range from 700 to −800 mV. The cyclic voltammetry is used to study the electrochemical behaviors of nitrite on CuPtCl6/GC modified electrode and the electrode displays a good catalytic activity toward the oxidation of nitrite. The effects of the film thickness, pH, the electrode stability and precision have been evaluated. Experiments in flow-injection analysis are performed to characterize the electrode as an amperometric sensor for the detection of nitrite. The modified electrode shows a wide dynamic range, quite a low detection limit and short response time. The linear relationship between the flow-injection peak currents and the concentrations of nitrite is at a range of 1×10−7–2×10−3 M with a detection limit of 5×10−8 M.  相似文献   

9.
A novel electrochemical DNA biosensor based on methylene blue (MB) and zirconia (ZrO2) thin films modified gold electrode for DNA hybridization detection is presented. Zirconia thin films were electrodynamically deposited onto the bare gold electrode in an aqueous electrolyte of ZrOCl2 and KCl by cycling the potential between −1.1 and +0.7 V (versus Ag/AgCl) at a scan rate of 20 mV s−1. Oligonucleotide probes with phosphate group at the 5′ end were attached onto the zirconia thin films because zirconia is affinity for phosphoric group. The surface density of the immobilized DNA molecules at the zirconia interface was investigated by fluorescence spectroscopy method. Hybridization was induced by exposure of the ssDNA-containing Au electrode to complementary ssDNA in solution. The decreases in the peak currents of MB, an electroactive label, were observed upon hybridization of probe with the target. The cathodic peak current (ip) of MB after hybridization with the target DNA was linearly related to the logarithmic value of the target DNA concentration ranging from 2.25×10−10 to 2.25×10−8 mol l−1. A detection limit of 1.0×10−10 mol l−1 of oligonucleotides can be estimated.  相似文献   

10.
By designing a novel flow-through electrolytic cell (FEC), bromine was produced near to the surface of the platinum electrode by electrochemical oxidation of acidic KBr. The fast and weak chemiluminescence signal produced by the chemical reaction of the electrogenerated bromine with H2O2 was greatly enhanced by tetracyclines Based on these observations, a new, sensitive and simple electrogenerated chemiluminescence (ECL) method for the determination of tetracyclines was developed. Under the optimum experimental conditions, the calibration graphs are linear over the range 3.0×10−8 to 5.0×10−5 g ml−1 for tetracycline, 2.0×10−7 to 2.4×10−5 g ml−1 for oxytetracycline and 1.0×10−7 to 5.0×10−5 g ml−1 for chlortetracycline. The limits of detection (S/N=3) are 1.0×10−8 g ml−1 for tetracycline, 7.0×10−8 g ml−1 for oxytetracycline and 1.5×10−7 g ml−1 for chlortetracycline. For the determination 5.0×10−7 g ml−1 tetracycline, the relative standard deviation was <5%. The proposed method was used to determine tetracyclines in pharmaceutical formulations.  相似文献   

11.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

12.
J. Femi Iyun  Ade Adegite 《Polyhedron》1989,8(24):2883-2888
At 25°C, I = 1.0 M (CF3SO3Li++CF3SO3H), [H+] = 0.034–0.274 M and λ = 453 nm, the rate equation for the oxidation of Ti(H2O), 63+ by bromine was found to be: −d/[Br2]T/dt=kK/[Br2][TiIII]/[H+]+K+kK/[Br3][TiIII]/[H++K, where k = 9.2 × 10−3 M −1 s −1 and K = 4.5 × 10−3 M. At [H+] = 1.0 M, [Br] = 0.05–0.4 M, the apparent second-order rate constant decreases as [Br] increases.

The pH-dependence of the oxidation of TiIII-edta by bromine is interpreted in terms of the change in identity of the TiIII-edta species as the pH of the reaction medium changes. The second-order rate constants were fitted using a non-linear least-square computer program with (1/k0edta)2 weighting into an equation of the form: k0edta =k1+k2K1[H+]−1+k3K1K2[H+]−2/1+K1[H+[H+−1+K1K2[H+]−2, with K1 and K2 fixed as earlier determined at 9.55 × 10−3 and 2.29 × 10−9 M, respectively, for the oxidation of bromine. k1=k2=(3.1±0.32)×103M−1s−1 k3=(2.3±0.45)×106N−1s−1.

It is proposed that these electron transfer reactions proceed by univalent changes with the production of Br2.− as a transient intermediate. An outer-sphere mechanism is proposed for these reactions. The homonuclear exchange rate for TiIII-edta+TiIV-edta is estimated at 32 M−1 s−1.  相似文献   


13.
Electrical and electrokinetic phenomena (electrical resistance, streaming potential and membrane potential) in a porous polysulfone membrane was studied in the framework of the linear thermodynamics of irreversible processes and the phenomenological coefficients were determined for different concentrations of NaCl and MgCl2 solutions (10−3M<5×10−2M). From experimental values, other characteristic membrane parameters such as the concentration of fixed charge in the membrane (=−3×10−3M), the ionic transport numbers and permeabilities through the membrane (t(Na+)=0.392 and t(Mg+2)=0.363; P(Na+)=3.5×l0−8m/sec and P(Mg+2)=2.9×10−8m/sec) were also obtained. Membrane surface-electrolyte solution interface was characterized by zeta potential values. The effect of both salt concentration and pH on zeta potential results was also studied.  相似文献   

14.
Campuzano S  Pedrero M  Pingarrón JM 《Talanta》2005,66(5):1310-1319
The construction and performance under flow-injection conditions of an integrated amperometric biosensor for hydrogen peroxide is reported. The design of the bioelectrode is based on a mercaptopropionic acid (MPA) self-assembled monolayer (SAM) modified gold disk electrode on which horseradish peroxidase (HRP, 24.3 U) was immobilized by cross-linking with glutaraldehyde together with the mediator tetrathiafulvalene (TTF, 1 μmol), which was entrapped in the three-dimensional aggregate formed.

The amperometric biosensor allows the obtention of reproducible flow injection amperometric responses at an applied potential of 0.00 V in 0.05 mol L−1 phosphate buffer, pH 7.0 (flow rate: 1.40 mL min−1, injection volume: 150 μL), with a range of linearity for hydrogen peroxide within the 2.0 × 10−7–1.0 × 10−4 mol L−1 concentration range (slope: (2.33 ± 0.02) × 10−2 A mol−1 L, r = 0.999). A detection limit of 6.9 × 10−8 mol L−1 was obtained together with a R.S.D. (n = 50) of 2.7% for a hydrogen peroxide concentration level of 5.0 × 10−5 mol L−1. The immobilization method showed a good reproducibility with a R.S.D. of 5.3% for five different electrodes. Moreover, the useful lifetime of one single biosensor was estimated in 13 days.

The SAM-based biosensor was applied for the determination of hydrogen peroxide in rainwater and in a hair dye. The results obtained were validated by comparison with those obtained with a spectrophotometric reference method. In addition, the recovery of hydrogen peroxide in sterilised milk was tested.  相似文献   


15.
Fenoterol and salbutamol were determined by electrogenerated chemiluminescence (ECL) coupled with flow injection analysis (FIA), using Ru(bpy)32+ as the luminescent substance. Fenoterol and salbutamol oxidize together with the ruthenium 2,2-bipyridyl at a platinum electrode, which leads to an increase in the luminescent intensity, and this increase is proportional to the analyte concentration. For fenoterol a linear calibration curve within the range from 1.0 × 10−5 to 1.0 × 10−4 mol l−1 was obtained with a correlation coefficient of 0.998 (n = 5) and for salbutamol the linear analytical curve was also obtained in this range with a correlation coefficient of 0.995 (n = 5). The relative standard deviation was estimated as ≤2.5% for 3 × 10−5 mol l−1 for fenoterol solution and as ≤1.3% for 5.0 × 10−5 mol l−1 salbutamol solution for 15 successive injections. The limit of detection for fenoterol was 2.4 × 10−7 mol l−1 and for salbutamol was 4.0 × 10−7 mol l−1. Fenoterol and salbutamol were successfully determined in drug tablets and the soluble components of the matrix did not interfere in the luminescent emission. The results obtained using the luminescent methodology were not statistically different from those obtained by UV-spectrophotometry at 95% confidence level.  相似文献   

16.
Yao T  Satomura M  Nakahara T 《Talanta》1994,41(12):2113-2119
A flow-injection system is proposed for the simultaneous determination of sulfite and phosphate in wine. A sulfite oxidase immobilized reactor and purine nucleoside phosphorylase-xanthine oxidase co-immobilized reactor are incorporated at fixed positions (parallel configuration) in the flow line, which is based on the splitting of the flow after sample injection and subsequent confluence. A poly(1,2-diaminobenzene)-coated platinum electrode is used as an amperometric detector to detect selectively hydrogen peroxide generated enzymatically in the enzyme reactors, without any interference from oxidizable species and proteins present in wine. Because each channel has a different residence time, two peaks are obtained. The first peak corresponds to sulfite and the second peak to phosphate. The peak current is linearly related to the concentrations of sulfite between 1 × 10−5 and 2 × 10−3M and phosphate between 2 × 10−5 and 5 × 10−3M. The simultaneous determination of sulfite and phosphate in wine can be performed at a rate of 30 samples/hr with satisfactory precision (less than 1.2% RSD) and no pretreatment except for the sample dilution.  相似文献   

17.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

18.
Amperometric enzyme biosensors for the determination of acetylcholine (ACh) and choline (Ch) have been described. For the fabrication of the biosensors, N-acetylaniline (nAN) was first electropolymerized on a Pt electrode surface to be served as a permselective layer to reject interferences. Bovine serum albumin (BSA) and choline oxidase (CHOD) were co-immobilized in a zinc oxide (ZnO) sol–gel membrane on the above modified Pt electrode for a Ch sensor, or CHOD, acetylcholinesterase (AChE) and BSA immobilized together for an ACh/Ch sensor. The poly (N-acetylaniline) (pnAN) film was the first time used for an ACh/Ch sensor and found to have excellent anti-interference ability, and the BSA in the sol–gel can improve the stability and activity of the enzymes. Amperometric detection of ACh and Ch were realized at an applied potential of +0.6 V versus SCE. The resulting sensors were characterized by fast response, expanded linear range and low interference from endogenous electroactive species. Temperature and pH dependence and stability of the sensor were investigated. The optimal ACh/Ch sensor gave a linear response range of 1.0 × 10−6 to 1.5 × 10−3 M to ACh with a detection limit (S/N = 3) of 6.0 × 10−7 M and a linear response range up to 1.6 × 10−3 M to Ch with a detection limit of 5.0 × 10−7 M. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

19.
Zhang N  Zhang X  Zhao Y 《Talanta》2004,62(5):1041-1045
The behavior of the ciprofloxacin (CPFX) complex with copper, Cu(II)L2, at a mercury electrode has been investigated in borax–boric acid buffer. The adsorption phenomena were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be reduction of Cu(II)L2 adsorbed on the surface of the electrode by an irreversible charge transfer to metal amalgam, Cu(0)(Hg). In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2–DNA results in the decrease of the equilibrium concentration of Cu(II)L2 and its peak current. Under the optimum conditions, the decrease of the peak current is proportional to DNA concentration. The linear ranges are 6.67×10−8 to 1.20×10−5 g ml−1 for calf thymus DNA (ctDNA), 3.30×10−8 to 2.33×10−6 g ml−1 for fish sperm DNA (fsDNA) and 1.0×10−8 to 1.2×10−6 g ml−1 for yeast RNA. The detection limits are 5.00×10−9, 3.00×10−9 and 2.50×10−9 g ml−1, respectively. This method exhibits good recovery and high sensitivity.  相似文献   

20.
Saran L  Cavalheiro E  Neves EA 《Talanta》1995,42(12):2027-2032
The highly neutralized ethylenediaminetetraacetate (EDTA) titrant (95–99% as Y4− anion) precipitates with Ag+ cations to form the Ag4Y species, in aqueous medium, which is well characterized from conductometric titration, thermal analysis and potentiometric titration of the silver content of the solid. The precipitate dissolves in excess Y4− to form a complex, AgY3−. Equilibrium studies at 25°C and ionic strength 0.50 M (NaNO3) have shown from solubility and potentiometric measurements that the formation constant (95% confidence level) β1 = (1.93 ± 0.07) × 105 M−1 and the solubility products are KS0 = [Ag +]4[Y4−] = (9.0 ± 0.4) × 10−18 M5 and KS1 = [Ag +]3[AgY3−] = (1.74 ± 0.08) × 10−12 M4. The presence of Na+, rather than ionic strength, markedly affects the equilibrium; the data at ionic strength 0.10 M are: β1 = (1.19 ± 0.03) × 106 M−1, KS0 = (1.6 ± 0.4) × 10−19 M5 and KS1 = (1.9 ± 0.5) × 10−13 M4; at ionic strength tending to zero; β1 = (1.82 ± 0.05) × 107 M−1, KS0 = (2.6 ± 0.8) × 10−22 M5 and KS1 = (5 ± 1) × 10−15 M4. The intrinsic solubility is 2.03 mM silver (I) in 0.50 M NaNO3. Well-defined potentiometric titration curves can be taken in the range 1–2 mM with the Ag indicator electrode. Thermal analysis revealed from differential scanning calorimetry a sharp exothermic peak at 142°C; thermal gravimetry/differential thermal gravimetry has shown mass loss due to silver formation and a brown residue, a water-soluble polymeric acid (decomposition range 135–157°C), tending to pure silver at 600°C, consistent with the original Ag4Y salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号