首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This Minireview discusses novel insights into the electronic structure of carbon nanotubes obtained using single-molecule fluorescence spectroscopy. Fluorescence spectra from single nanotubes are well described by a single, Lorentzian lineshape. Nanotubes with identical structures fluoresce with different energies due to local electronic perturbations. Carbon nanotube fluorescence unexpectedly does not-show any intensity or spectral fluctuations at 300 K The lack of intensity blinking or bleaching demonstrates that carbon nanotubes have the potential to provide a stable, single-molecule infrared photon source, allowing for the exciting possibility of applications in quantum optics and biophotonics.  相似文献   

2.
3.
Spectral diffusion as a result of both the transitions between different molecular conformers and the ′′molecular softness′′ of quasi‐free perylene diimides on a SiO2 surface is investigated by means of single‐molecule spectroscopy, which reveals the time dependence of both the fluorescence spectra and the three‐dimensional orientation. Spectral wavelengths of all single emitters cover a wide energy range of about 0.27 eV, which is due to different types of conformers with large differences in optical transition energy. Time‐dependent spectral trajectories of single emitters within this wavelength manifold are evaluated with a model transcribed from the analysis of spatial diffusion. Spectral diffusion processes are closely correlated with fluorescence emission and excitation power. The overall analysis of spectral diffusion reveals, similar to proteins, a hierarchy of energy barriers in a broad energy landscape.  相似文献   

4.
We report on the dynamics of fluorescence from individual molecules of a mutant of the wild-type green fluorescent protein (GFP) from Aequorea victoria, super folder GFP (SFGFP). SFGFP is a novel and robust variant designed for in vivo high-throughput screening of protein expression levels. It shows increased thermal stability and is able to retain its fluorescence when fused to poorly folding proteins. We use a recently developed single-molecule technique which combines fluorescence-fluctuation spectroscopy and time-correlated single photon counting in order to characterize the photophysical properties of SFGFP under one- (OPE) and two- (TPE) photon excitation conditions. We use Rhodamine 110 as a model chromophore to validate the methodology and to explain the single-molecule results of SFGFP. Under OPE, single SFGFP molecules undergo fluorescence flickering on the time scale of micros and tens of micros due to triplet formation and ground-state protonation-deprotonation, respectively, as demonstrated by excitation intensity- and pH-dependent experiments. OPE single-molecule fluorescence lifetimes indicate heterogeneity in the population of SFGFP, indicating the presence of the deprotonated I and B forms of the SFGFP chromophore. TPE of single SFGFP molecules results in the photoconversion of the chromophore. TPE of single SFGFP molecules show fluorescence flickering on the time scale of micros due to triplet formation. A flicker connected with protonation-deprotonation of the SFGFP chromophore is detected only at low pH. Our results show that SFGFP is a promising fusion reporter for intracellular applications using OPE and TPE microscopy.  相似文献   

5.
We report on the photophysical characterization at the single-molecule level of a graft copolymer consisting of a polythiophene backbone and long polystyrene branches. The presence of the branches prevents the polymer chain from forming a collapsed conformational state. The photophysical properties of the resulting solution-like conformation are studied by measuring single-molecule photobleaching dynamics, emission polarization anisotropy and emission spectra. The results are compared with those obtained on the same polythiophene derivative without the branches. It is found that the presence of the branches is a decisive factor in determining the photophysical properties of the polymers on the single-molecule level.  相似文献   

6.
7.
8.
9.
Fluorescence correlation spectroscopy (FCS) has become an important tool for measuring diffusion, concentration, and molecular interactions of cellular components. The interpretation of FCS data critically depends on the measurement set-up. Here, we present a rigorous theory of FCS based on exact wave-optical calculations. Six of the most important optical and photophysical factors that influence FCS are studied: fluorescence anisotropy, cover-slide thickness, refractive index of the sample, laser-beam geometry, optical saturation, and pinhole adjustment. Our theoretical framework represents a general attempt to link all relevant parameters of the experimental set-up with the measured correlation function.  相似文献   

10.
11.
Transient absorption spectroscopy with sub-100 fs time resolution was performed to investigate the oligomerisation behaviour of eYFP in solution. A single time constant tau(AD)=2.2+/-0.15 ps is sufficient to describe the time-resolved anisotropy decay up to at least 200 ps. The close contact of two protein barrels is deduced as the exclusive aggregation state in solution. From the final anisotropy r(infinity)=0.28+/-0.02, the underlying quaternary structure can be traced back to the somewhat distorted structure of the dimers of wt-GFP. The use of autofluorescent proteins as rulers in F?rster resonance energy transfer (FRET) measurements may demand polarisation-sensitive detection of the fluorescence with high time resolution.  相似文献   

12.
13.
Despite common presumption due to fast photodestruction pathways through higher excited states, we show that further improvement of photostability is still achievable with diffusion‐limited photoprotection formulas. Single‐molecule fluorescence spectroscopy reveals that thiolate ions effectively quench triplet states of dyes by photoinduced electron transfer. Interestingly, this reaction rarely yields a radical anion of the dye, but direct return to the ground state is promoted by an almost instantaneous back electron transfer (geminate recombination). This type of mechanism is not detected for commonly used reductants such as ascorbic acid and trolox. The mechanism avoids the formation of radical cations and improves the photostability of single fluorophores. We find that a combination of β‐mercaptoethanol and classical reducing and oxidizing systems yields the best results for several dyes including Atto532 and Alexa568.  相似文献   

14.
15.
We present for the first time cavity-controlled fluorescence spectra and decay curves of single dipole emitters interacting at room temperature with the first longitudinal mode of a Fabry-Perot microcavity offering a lambda/2-spacing between its silver mirrors. The spontaneous emission rate of individual dye molecules was found to be enhanced by the Purcell effect by up to three times compared to the rate in free space, in agreement with theoretical predictions. Moreover, our new microcavity design was found to provide long-term stability and single-molecule sensitivity under ambient conditions for several months without noticeable reduction of the cavity-Q value. We consider this as a significant advance for single-photon sources operating at room temperature.  相似文献   

16.
17.
18.
The optical signals of single molecules provide information about structure and dynamics of their nanoscale environment, free from space and time averaging. These new data are particularly useful whenever complex structures or dynamics are present, as in polymers or in porous oxides, but also in many other classes of materials, where heterogeneity is less obvious. We review the main uses of single molecules in studies of condensed matter at nanometer scales, especially in the fields of soft matter and materials science. We discuss several examples, including the orientation distribution of molecules in crystals, rotational diffusion in glass‐forming molecular liquids, polymer studies with probes and labeled chains, porous and heterogeneous oxide materials, blinking of single molecules and nanocrystals, and the potential of surface‐enhanced Raman scattering for local chemical analysis. All these examples show that static and dynamic heterogeneities and the spread of molecular parameters are much larger than previously imagined.  相似文献   

19.
We study single dibenzoterrylene molecules in an anthracene single crystal at 1.4 K in two insertion sites at 785.1 and 794.3 nm. The single-molecule zero-phonon lines are narrow (about 30 MHz), intense (the detected fluorescence rates at saturation reach 100,000 counts s(-1)), and very photostable. The intersystem-crossing yield is extremely low (10(-7) or lower). All of these features are hallmarks of an excellent system for high-resolution spectroscopy and nanoscale probing at cryogenic temperatures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号