首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The reaction of ctc-[Ru(RaaiR′)2Cl2] (1) [RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2NN(1)-R′, R = H (a), Me (b), Cl (c), R′ = Me (2), Et (3), Bz (4)] with (NH4)2MoS4 in aqueous MeOH afforded red-violet mixed ligand complexes of the type [(RaaiR′)2Ru(μ-S)2Mo(OH)2] (2–4). In complexes (2–4) the terminal Mo=S bonds of the MoS42− unit become hydroxylated and the molybdenum ion is reduced from the starting MoVI in MoS42− to MoIV in the final product (2–4). The solution electronic spectra exhibit a strong MLCT band at 550–570 nm in DCM. Cyclic voltammograms show a Ru(III)/Ru(II) couple at 1.10–1.4 V, irreversible Mo(IV)/Mo(V) oxidations in the 1.66–1.72 V range, along with four successive reversible ligand reductions in the range −0.45–0.67 V (one electron), −0.82–1.12 V (one electron), and −1.44–1.90 V (simultaneously two electrons).  相似文献   

2.
The alkoxido-titanium pentamolybdate [(iPrO)TiMo5O18]3− (1) has been obtained as its tetrabutylammonium (TBA) salt by hydrolysis of a mixture containing (TBA)2[Mo2O7], (TBA)4[Mo8O26] and Ti(OiPr)4 in MeCN and has been characterised by 1H, 13C, 17O, 49Ti and 95Mo NMR and FTIR spectroscopy, electrospray ionisation mass spectrometry, elemental microanalysis and single-crystal X-ray crystallography. The Lindqvist-type structure is derived from [Mo6O19]2− by replacement of {Mo=O}4+ by {(iPrO)Ti}3+ and shows bond alternation in the TiMo3O4 rings, with average bond distances of 1.956(8) ? for Ti–O(Mo), 1.832(7) ? for Mo–O(Ti), 1.943(7) ? for Moeq–O(Moax) and 1.910(6) ? for Moax–O(Moeq), while the increase in charge results in a decrease in 17O NMR chemical shift for terminal Mo=O groups from δ 933 for [Mo6O19]2− to δ 875 and 857 for 1 and a shift in νMo=O from 951 cm−1 for [Mo6O19]2− to 930 cm−1 for 1. The main peaks in the negative-ion electrospray ionisation mass spectrum of (TBA)3 1 could be assigned to ion aggregates containing 1 or fragments derived from 1, including {(TBA)2[(iPrO)TiMo5O18]}, {(TBA)[(iPrO)TiMo5O18]}2−, {(iPrO)TiMo2O8}, {TiMo5O18}2−, {TiMo4O15}2− and {Mo3O10}2−.  相似文献   

3.
Reacting MoO2(acac)2 with Ph2POOH or Me2POOH in EtOH results in the formation of the tetranuclear molybdenum (V) clusters Mo4(μ 3-O)4(μ-O2PR2)4O4, PR2 = PPh2, 1, or PMe2, 2, in functional yields (>90% and 55% respectively). The reaction of WO2(acac)2 with Ph2POOH in MeOH affords the tungsten dimer [(CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2], 3. The single crystal X-ray determined structures of complexes 1–3 are reported. In 1 and 2, the four Mo=O units are interconnected by four triply bridging oxygen atoms, resulting in a distorted cubic-like structure for the Mo4(μ 3-O)4O4 units. Each molybdenum atom forms two additional Mo–O bonds with two oxygen atoms from different adjacent phosphinato ligands. Complex 3, a tungsten dimer, contains packing disorder and consists of bridging oxo and diphenylphosphinato ligands. The bonding of 1 and 2 assessed by density-functional methods showed that bonding between the Mo(V) centers occurs through σ overlap of the d xy orbitals. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Dedicated to the memory of Professor F. A. Cotton. Veritas numquam perit.  相似文献   

4.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

5.
The reaction of ctc-[Ru(RaaiR′)2Cl2] (3a–3i) [RaaiR′=1-alkyl-2-(arylazo)imidazole, p-R—C6H4—N=N— C3H2NN(1)—R′, R=H, OMe, NO2, R′=Me, Et, Bz] with KS2COR′′ (R′′=Me, Et, Pr, Bu or CH2Ph) in boiling dimethylformamide afforded [RuII{o-S—C6H4(p-R-)—N=N—C3H2NN(1)—R′}2] (4a–4i), where the ortho-carbon atom of the pendant phenyl ring of both ligands has been selectively and directedly thiolated. The newly formed tridentate thiolate ligands are bound in a meridional fashion. The solution electronic spectra exhibit a strong MLCT band near 700 nm and near 550 nm, respectively in DCM. The molecular geometry of the complexes in solution has been determined by H n.m.r. spectroscopy. Cyclic voltammograms show a Ru(II)/Ru(III) couple near 0.4 V and an irreversible oxidation response near 1.0 V due to oxidation of the coordinated thiol group, along with two successive reversible ligand reductions in the range −0.80–0.87 V (one electron), −1.38–1.42 V (one electron). Coulometric oxidation of the complexes at 0.6 V versus SCE in CH2Cl2 produced an unstable Ru(III) congener. When R=Me the presence of trivalent ruthenium was proved by a rhombic e.p.r. spectrum having g1=2.349, g2=2.310.  相似文献   

6.
New dinuclear ruthenium manganese complexes of general composition (bpy)2Ru(L)MnClx(H2O)2 (L is 1,10-phenanthroline-5,6-dione, 3,3′-dicarboxy-2,2′-bipyridyl, or bis(pyrazolyl); x = 2 or 4) were synthesized by the reaction of (bpy)2Ru(L) with MnCl2 · 4H2O. These compounds and the starting mononuclear ruthenium complexes were studied by spectrophotometric and electrochemical methods in MeCN. The position of the charge-transfer band RuII → L in the spectra depends on the donor-acceptor characteristics of the ligand L. For the dinuclear complex under study, the formal potentials of reversible one-electron oxidation of RuII are in the range of 0.9–1.2 V (vs. the standard hydrogen electrode), whereas oxidation of MnII occurs at more positive (by 0.1–0.2 V) potentials. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2281–2285, October, 2005.  相似文献   

7.
A novel 4d-4f complex, {Cs[Yb(MeOH)3(DMF)(H2O)Mo(CN)8] · H2O} n (1) (DMF = N,N′-dimethylformamide) has been synthesized and structurally characterized. The complex 1 is a one-dimensional (1D) infinite chain, which adopts a 1D ladder-like structure motif assembled from an edge-sharing rhombus and square of Mo2Yb2 based on the [Mo(CN)8]4− and Yb3+ as building blocks. The complex 1 crystallizes in triclinic, space group P1 with a = 9.841(2) b = 10.226(2) ?, c = 13.404(3) ?, α = 82.02(3)°, β = 86.86(3)°, γ = 65.10(3)°, V = 1211.7(4) ?3 and Z = 2.  相似文献   

8.
The reaction of [Ru(OH2)2(RaaiR′)2]2+ (RaaiR′ = 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N=N-C3H2NN(1)-R′, R = H (1), Me (2), Cl (3); R′ = Me (a), Et (b), CH2Ph (c)) with 8-quinolinol (HQ) in acetone solution followed by the addition of NH4PF6 has afforded violet coloured mixed ligand complexes of the composition [Ru(Q)(RaaiR′)2](PF6). The maximum molecular peak of 1b is observed at m’z 790 (50%) in the ESI mass spectrum. Ir spectra of the complexes show -C=N- and -N=N- stretching near at 1590 and 1370 cm−1. The 1H NMR spectral measurements suggest methylene, -CH2−, in RaaiEt gives a complex AB type while in RaaiCH2Ph it shows AB type quartets. Considering the arylazoimidazole and oxine moitie there are twenty different carbon atoms in the molecule which gives a total of twenty different peaks in the C13 NMR spectrum of complex 1a. In the 1H-1H COSY spectrum of the present complexes, absence of any off-diagonal peaks extending from δ = 14.12 and 9.55 ppm confirm their assignment of no proton on N(1) and N(3) respectively. Contour peaks in the 1H-13C HMQC spectrum in the present complexes, the absence of any contours at δ = 157.12, 160.76, 155.67 ppm and 157.68–160.2 ppm assign them to the C(2), C(6), C(g) and C(h), C(i) carbon atoms respectively. The solution structure and stereoretentive transformation in each step have been established from n.m.r. results. Cyclic voltammograme show a Ru(III)/Ru(II) couple at 1.0–1.1 V versus SCE along with three successive ligand reductions.  相似文献   

9.
The complex cis-[Mo2(HDpyF)2(CH3CN)4](BF4)4, 1, was prepared by the reaction of Mo2(DpyF)4 with HBF4 in CH3CN, in which new bonding mode of the HDpyF ligand and axial N–H···Mo interactions are observed. Reaction of 1 with pyridine afforded the complex trans-[Mo2(DpyF)2(py)4](BF4)2, 2. In complex 1, the neutral bidentate HDpyF ligands bridge the metal centers through one of the amine nitrogen atoms and the adjacent pyridyl nitrogen atom, resulting in the s-trans-anti-s-trans conformation. The anionic DpyF ligands of 2 adopt the s-trans,s-trans conformation and are coordinated to the Mo centers in bidentate fashions through the two central nitrogen atoms and the two terminal nitrogen atoms are not coordinated. Dedicated to the memory of Professor F. A. Cotton, a great mentor and friend.  相似文献   

10.
The kinetics and mechanism of photodehydrogenation of the phosphine hydride complexes MH4L4 (M = Mo, W; L are phosphine ligands) and the formation of coordinatively unsaturated species ML4 were studied by the absorbance of long-wavelength bands with λmax at 450–460 nm appeared in the absorption spectra of the photoproducts. The rate constants of the reactions of the coordinatively unsaturated M(DPPE)2 species (M = Mo, W; DPPE = Ph2PCH2CH2PPh2) with molecular nitrogen in benzene were determined (k W = 200 s−1, k Mo = 8700 s−1). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 282–284, February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号