首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a microtubular gas diffusion electrodes made of multi-walled carbon nanotubes (MWCNT). The electrodes were prepared by inside-out cake filtration of an aqueous MWCNT suspension onto a microfiltration hollow fiber (HF) membrane, followed by washing out the surfactant, drying and removal of the all CNT microtube from the HF membrane. Length, outer diameter, and wall thickness of the tubular electrodes are: up to 44 cm, ~ 1.7 mm and 275 μm, respectively. The BET surface area is 200 m2/g with a porosity of 48–67% and an electrical conductivity of ~ 20 S/cm. Application of this microtubular Gas Diffusion Electrodes (GDE) was studied for the oxygen reduction reaction (ORR) in divided and undivided electrochemical cells. Oxygen supply into the lumen of the tubular electrodes resulted in much higher current densities for ORR than in experiments where the electrolyte was saturated by bubbling with pure oxygen. Within the 0.25–1.0 bar pressure (gauge) region, higher ORR rates were achieved at lower pressure. We also show that H2O2 production is possible using the new GDE. We propose to use such novel electrodes for the fabrication of tubular electrochemical reactors, e.g. fuel cells, H2O2 generators, CO2 reduction and other processes that involve GDE application.  相似文献   

2.
Direct methanol fuel cell (DMFC) consisting of a double-catalytic layered membrane electrode assembly (MEA) provide higher performance than that with the traditional MEA. This novel structured MEA includes a hydrophilic inner catalyst layer and a traditional electrode with an outer catalyst layer, which was made using both catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods. The inner catalyst was PtRu black on anode and Pt black on cathode. The outer catalyst was carbon supported Pt–Ru/Pt on anode and cathode, respectively. Thus in the double-catalytic layered electrodes three gradients were formed: catalyst concentration gradient, hydrophilicity gradient and porosity gradient, resulting in good mass transfer, proton and electron conducting and low methanol crossover. The peak density of DMFC with such MEA was 19 mW cm−2, operated at 2 M CH3OH, 2 atm oxygen at room temperature, which was much higher than DMFC with traditional MEA.  相似文献   

3.
The electrocatalytic activity of bimetallic BiPd catalysts supported on Sibunit carbon towards hydrogen oxidation/evolution reactions (HOR/HER) was studied in a gas diffusion electrode (GDE) setup. Catalysts were synthesized by deposition of Pd on the carbon support, followed by impregnation of Pd/C precursor with Bi(NO3)3 solution and reduction in hydrogen. Transmission electron microscopy and local EDX elemental analysis revealed that BiPd/C catalysts contain bimetallic particles with narrow size distribution with maxima at 3.2–4.1 nm. X-ray diffraction evidenced that bimetallic particles are constituted by Pd–Bi solid solution. It was shown that modification of Pd/C by bismuth increases the specific activity of palladium towards HOR/HER by a factor of 3.  相似文献   

4.
O2 concentration near Pt surface during oxygen reduction reaction (ORR) in 0.1 M HClO4 has been monitored by rotating ring-disk electrodes system. At 0.8 V < E < 1.0 V (vs. RHE), O2 concentration near Pt surface increases with potential accompanying with the decrease of ORR current at the disk electrode; O2 concentration in the negative-going scan is larger than that at the same potential in the positive-going scan, while ORR current shows the opposite trend at ω > 400 rpm. At E > 0.8 V accumulation of Oad|OHad at Pt disk electrode with ORR time is evident, revealing that Oad|OHad formation rate is faster than that for the removal of OHad to H2O under such conditions. At relatively lower rotation speed and faster scan rate, the cathodic current during ORR in the negative-going scan can be larger than that in the positive-going scan with a current peak at ca. 0.8 V, which is attributed to the superimposition of ORR current increase due to change of O2 concentration near the surface and the additional reduction of Oad|OHad formed from decomposed O2 at higher potentials.  相似文献   

5.
Oxygen reduction reaction (ORR) in alkaline medium at iron (II) tetrakis (diaquaplatinum) octacarboxyphthalocyanine (PtFeOCPc) catalyst supported on multi-walled carbon nanotubes (MWCNTs) has been described. The ORR followed the direct 4-electron transfer process, with a very low onset potential (approximately zero volts vs. Ag|AgCl, saturated KCl) and at a kinetic rate constant, 2.78 × 10? 2 cm s? 1. The results clearly showed that the ORR activity at the MWCNT-PtFeOCPc platform is comparable or even better than recent reports with other electrocatalysts, thus a promising catalytic platform for cathodic process in fuel cell device.  相似文献   

6.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

7.
In this study, we use rotating ring disc electrode measurements to investigate the influence of the proton transport on the kinetics of the oxygen reduction reaction (ORR) in a 3D nanostructured catalytic layer based on Pt nanoparticles supported on vertically aligned carbon nanofibers. The results confirm that protons are involved in the rate determining step of the ORR in acidic media. For pH  3, the ORR occurs in two successive reduction waves. The first current plateau is limited by the proton diffusion and is followed by the second reduction wave attributed to the mechanism involving water dissociation. The shape of the H2O2 escape current curve is strongly affected by the pH of the solution and shows a pronounced maximum when the pH value is increased. These experimental features are discussed with the help of a kinetic model.  相似文献   

8.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

9.
Doped graphene-based cathode catalysts are considered as promising competitors for ORR, but their power density has been low compared to Pt-based cathodes, mainly due to poor mass-transport properties. A new electrocatalyst for PEMFCs, an iodine doped grahene was prepared, characterized, and tested and the results are presented in this paper. We report a hybrid derived electrocatalyst with increased electrochemical active area and enhanced mass-transport properties. The electrochemical performances of several configurations were tested and compared with a typical Pt/C cathode configuration. As a standalone catalyst, the iodine doped graphene gives a performance with 60% lower than if it is placed between gas diffusion layer and catalyst layer. If it is included as microporous layer, the electrochemical performances of the fuel cell are with 15% bigger in terms of power density than the typical fuel cell with the same Pt/C loading, proving the beneficial effect of the iodine doped graphene for the fuel cell in the ohmic and mass transfer region. Moreover, the hybrid cathode manufactured by commercial Pt/C together with the material with best proprieties, is tested in a H2-Air fuel cell and a power density of 0.55 W cm−2 at 0.52 V was obtained, which is superior to that of a commercial Pt-based cathode tested under identical conditions (0.46 W cm−2).  相似文献   

10.
The electrochemical reduction of CO2 is strongly influenced by both the applied potential and the surface adsorption status of the catalyst. In this work a gas diffusion electrode (GDE) coated with Pd nanoparticles/carbon black (Pd/XC72) was used to study the electrochemical reduction of CO2. Cyclic voltammetric (CV) analysis of Pd/XC72 between 1.5 V and − 0.6 V (vs. RHE) shows the formation of intermediates and the blocking of hydrogen absorption on the Pd nanoparticles (NPs) under a CO2 atmosphere. The relationships between the Faradaic efficiency/current density and the applied potential reveal that the onset potential of CO formation is around − 0.4 V. Moreover, the presence of adsorbed CO was confirmed through CV analysis of Pd/XC72 under CO2 and CO/He atmospheres. This demonstrates that H atoms and CO intermediates co-adsorb on the surface of the Pd NPs at an applied potential of around − 0.4 V. When the applied potential is more negative than − 0.6 V, adsorption of CO intermediates on the surface of the Pd NPs becomes dominant.  相似文献   

11.
In a fuel cell system where concentrated phosphoric acid (PA) is used as a proton conducting medium, the use of PA causes some undesirable effects on oxygen reduction reaction (ORR) at Pt catalyst. Ammonium trifluoromethanesulfonate (ATFMS) is introduced as a cathode additive to increase the local oxygen concentration near the Pt catalyst. A cathode with the optimum composition of ATFMS shows a higher single cell performance than that without the additive when a single cell based on a PA-doped polymer membrane is operated at 150 °C. The enhanced ORR activity and oxygen solubility with the incorporation of ATFMS are proved with rotating disk electrode (RDE) and Pt microelectrode experiments. Single cell performance for longer than 600 h without decay in operating voltage could support the stability of the additive.  相似文献   

12.
In this communication, we report a novel CoTETA/C catalyst for the oxygen reduction reaction (ORR) which was prepared from a carbon-supported cobalt triethylenetetramine chelate, followed by heat treatment in an inert atmosphere. Electrochemical performances were measured using rotating disk electrode (RDE) technique and a PEM fuel cell test station. For a H2–O2 fuel cell system, the maximum output power density reached 162 mW cm?2 at 25 °C with non-humidified reaction gases. We found a nanometallic face-centered cubic (fcc) α-Co phase embedded in the graphitic carbon after pyrolysis, based on X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. These results indicated that CoTETA/C is a promising catalyst for the ORR.  相似文献   

13.
Sulfur doped reduced graphene oxide (S-rGO) is investigated for catalytic activity towards the oxygen reduction reaction (ORR) in acidic and alkaline electrolytes. X-ray photoelectron spectroscopy shows that sulfur in S-rGO is predominantly integrated as thiophene motifs within graphene sheets. The overall sulfur content is determined to be approximately 2.2 at.% (elemental analysis). The catalytic activity of S-rGO towards the ORR is investigated by both rotating disc electrode (RDE) and polymer electrolyte fuel cell (PEFC) measurements. RDE measurements reveal onset potentials of 0.3 V and 0.74 V (vs. RHE) in acidic and alkaline electrolyte, respectively. In a solid electrolyte fuel cell with S-rGO as cathode material, this is reflected in an open circuit voltage of 0.37 V and 0.78 V and a maximum power density of 1.19 mW/cm2 and 2.38 mW/cm2 in acidic and alkaline polymer electrolyte, respectively. This is the first report investigating the catalytic activity of a sulfur doped carbon material in both acidic and alkaline liquid electrolyte, as well as in both proton and anion exchange polymer electrolyte fuel cells.  相似文献   

14.
A specially designed flow cell, fabricated via rapid prototyping (3D printing), was used to perform in-situ electrochemical hydrogen loading and cyclic voltammetry on a Pd foil in alkaline solution during scanning Kelvin probe (SKP) measurements. SKP was successfully employed for hydrogen detection on the exit side of the sample, including determination of hydrogen diffusion coefficient in Pd to 3.32  10 7 cm2 s 1 at 23 °C. Convection of electrolyte allowed hydrogen charging even under H2-forming conditions without surface blockage by evolving gas bubbles at very negative potentials. Comparison with electrochemical hydrogen detection under the same conditions, allowed a more comprehensive interpretation of SKP results including determination of trapping effects on measurement of diffusion coefficient. In this manner, the potentiodynamic hydrogen loading technique combined with SKP-H-detection was utilized to determine the effective hydrogen diffusion coefficient (Deff).  相似文献   

15.
A new approach to test fuel cell catalysts under conditions of high mass transport and variable temperature is described. This approach relies upon utilising a 5 μm thick gold grid to act as a catalyst support in contact with a perfluorsulfonic acid (PFSA) membrane in a true three electrode electrochemical configuration. The gold grid has 20 μm × 20 μm sized holes in it which allow the reactant gas to reach the catalyst layer. The high electrical conductivity and low profile of the grid ensure that electrical and mass transport losses are minimal. We have used this configuration to look at the oxygen reduction reaction (orr) and the hydrogen oxidation reaction (hor) on a platinum-black and platinum on carbon catalyst at a loading of about 10 μg cm−2. We find that for the orr we can measure kinetic currents over the entire range of relevant fuel cell operating potentials (0.55–1 V). Although platinum-black shows higher specific catalytic activity towards the orr than platinum on carbon at high potentials, this performance benefit is reduced at lower potentials. For the hor we measure exchange current densities of 0.022 A cm−2 and 0.026 A cm−2 respectively on the Pt-Black and Pt/C. These values indicate that there does not appear to be a size effect for the hor, unlike the orr.  相似文献   

16.
Changes in microbial fuel cell (MFC) architecture, materials, and solution chemistry can be used to increase power generation by microbial fuel cells (MFCs). It is shown here that using a phosphate buffer to increase solution conductivity, and ammonia gas treatment of a carbon cloth anode substantially increased the surface charge of the electrode (from 0.38 to 3.99 meq m−2), and improved MFC performance. Power increased to 1640 mW m−2 (96 W m−3) using a phosphate buffer, and further to 1970 mW m−2 (115 W m−3) using an ammonia-treated electrode. The combined effects of these two treatments boosted power production by 48% compared to previous results using this air-cathode MFC. In addition, the start up time of an MFC was reduced by 50%.  相似文献   

17.
Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co-sputtering of carbon and platinum on a commercial E-Tek® uncatalyzed gas diffusion layer in plasma fuel cell deposition devices. Pt loadings of 0.16 and 0.01 mg cm?2 have been realized. The Pt catalyst is dispersed as small clusters with size less than 2 nm over a depth of 500 nm. PEMFC test with symmetric electrodes loaded with 10 μg cm?2 led to maximum reproducible power densities as high as 0.4 and 0.17 W cm?2 with Nafion®212 and Nafion®115 membranes, respectively.  相似文献   

18.
In situ autocombustion has been developed as a novel and efficient route for the synthesis of perovskite–carbon nanocomposites for the oxygen reduction reaction (ORR) in alkaline media. We demonstrate the synthesis of crystalline LaMnO3 + δ perovskite–Vulcan composite with a high accessibility of active sites and high electronic conductivity required for efficient electrocatalysis. The rotating disc electrode measurements evidenced an excellent activity of the composite for the ORR.  相似文献   

19.
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol−1 to 17.38 kJ mol−1 after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm−2 mg−1 (Pt) to 130 mW cm−2 mg−1 after the anode electrode adsorbed FeTSPc.  相似文献   

20.
Catalytic activity of a polycrystalline gold electrode toward oxygen reduction reaction (ORR) in aqueous alkaline media in the presence of various alkali-metal sulfates (M2SO4, M = Li, Na, K, Rb and Cs) was investigated by hydrodynamic voltammetry. The fraction of 4e? pathway in low overpotentials (? 0.1 to ? 0.3 V) depended on the alkali-metal cations (Rb ? Na, K, Cs, Li). A complete 4e? reduction of O2 was only attained in the presence of Rb+ cation in the solution, which was comparable or even superior to that reported at the Au(100) single crystal electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号