首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A method for measuring the kinetics of the hydrogen oxidation reaction (HOR) in a fuel cell under enhanced mass transport conditions is presented. The measured limiting current density was roughly 1600 mA cmPt? 2, corresponding to a rate constant of the forward reaction in the Tafel step of 0.14 mol m? 2 s? 1 at 80 °C and 90% RH. The exchange current density for the HOR was determined using the slope at low overvoltages and was found to be 770 mA cmPt? 2. The high values for the limiting and exchange current densities suggest that the Pt loading in the anode catalyst can be reduced further without imposing measurable voltage loss.  相似文献   

2.
Visible light-active carbon modified n-type titanium oxide (CM-n-TiO2) thin films were synthesized by both flame oxidation and a combination of spray pyrolysis and flame oxidation. An undoped reference sample was also synthesized in an electric oven for comparison. Photoresponse of CM-n-TiO2 and n-TiO2 was evaluated by measuring the rates of water splitting to hydrogen and oxygen, in terms of observed photocurrent densities. Under monochromatic illumination from a xenon lamp, the integrated photocurrent densities from 300 nm to wavelengths corresponding to band gaps were found to be 1.12, 7.7, and 12.7 mA cm−2 for optimized oven-made n-TiO2 (sample 1), flame-made (sample 2), and spray pyrolysis flame-made CM-n-TiO2 (sample 3) thin films at 0.48, 0.24, and 0.215 V biases, respectively. The corresponding maximum photoconversion efficiencies for these thin films were 0.84%, 7.62%, and 12.89%, respectively. Under actual natural global AM 1.5 sunlight illumination of 1 sun, the photocurrent densities for water splitting were 0.85, 5.89, and 12.27 mA cm−2 for samples 1, 2, and 3, respectively. These photocurrent densities generated the maximum photoconversion efficiencies of 0.67%, 5.63%, and 12.26% for samples 1, 2, and 3, respectively, under global sunlight illuminations. These values compared well with those found under monochromatic light illumination from the xenon lamp. The increasing efficiencies were found to be consistent with lowering of main band gap from 3.0 eV to 2.65 eV and the generation of mid-gap bands at 1.6 eV and 1.4 eV above the valence band for samples 2 and 3, respectively. Carbon contents were found to be 0.0, 17.60, and 23.23 atom% for samples 1, 2, and 3, respectively. Dedicated to the 85th birthday of John O’ M. Bockris.  相似文献   

3.
This paper reports on the application of cornstalks-derived high-surface-area microporous carbon (MC) as the efficient photocathode of dye-sensitized solar cells (DSCs). The photocathode, which contains MC active material, Vulcan XC–72 carbon black conductive agent, and TiO2 binder, was obtained by a doctor blade method. Electronic impedance spectroscopy (EIS) of the MC film uniformly coated on fluorine doped SnO2 (FTO) glass displayed a low charge-transfer resistance of 1.32 Ω cm2. Cyclic voltammetry (CV) analysis of the as-prepared MC film exhibited excellent catalytic activity for I3?/I? redox reactions. The DSCs assembled with the MC film photocathode presented a short-circuit photocurrent density (Jsc) of 14.8 mA cm?2, an open-circuit photovoltage (Voc) of 798 mV, and a fill factor (FF) of 62.3%, corresponding to an overall conversion efficiency of 7.36% under AM 1.5 irradiation (100 mW cm?2), which is comparable to that of DSCs with Pt photocathode obtained by conventional thermal decomposition.  相似文献   

4.
Two novel trialkylsilyl-containing organic sensitizers (JK-53 and JK-54) have been designed and synthesized. Nanocrystalline TiO2–silica-based dye-sensitized solar cells (DSSCs) were fabricated using these dyes. Under standard global AM 1.5 solar conditions, the JK-53-sensitized cell gave a short-circuit photocurrent density (Jsc) of 6.37 mA cm?2, an open-circuit voltage (Voc) of 0.70 V, and a fill factor of 0.74. These values correspond to an overall conversion efficiency (η) of 3.31%. By comparison, the JK-54-sensitized cell resulted in a Jsc of 7.52 mA cm?2, a Voc of 0.71 V, and a fill factor of 0.75. These values give an overall conversion efficiency of 4.01%.  相似文献   

5.
The separation of deuterium from a hydrogen–deuterium mixture was carried out using an alkaline membrane fuel cell (AMFC) with a Pt catalyst. This novel use of an AMFC to separate deuterium from a mixture of H2 and D2 was demonstrated by the production of deuterium-enriched water during power generation by the AMFC. The deuterium separation factor increased with output current (i) to a maximum value of 1.64 attained at i = 30 mA cm 2.  相似文献   

6.
This work shows that highly ordered and mechanically stable micrometer-long Ta2O5 nanotube arrays can be fabricated by galvanostatic anodization in a few seconds. Typically, ~ 7.7 μm long nanotubes can be grown at 1.2 A cm 2 in only 2 s. Such nanotubes can be converted to Ta3N5 nanotube arrays by nitridation. Photoelectrochemical (PEC) water splitting using AM 1.5G illumination yields for the Ta3N5 nanotube photoanode modified with cobalt phosphate (Co–Pi) remarkable photocurrents of 5.9 mA cm −2 at 1.23 VRHE and 12.9 mA cm −2 at 1.59 VRHE and after Ba-doping a value of 7.5 mA cm −2 at 1.23 VRHE is obtained.  相似文献   

7.
For the first time in SnO2 based dye solar cells, here we report, efficiency exceeding 3% of the cells consisting with Indoline D-149 dye with unmodified SnO2 nano-crystallites. The cells sensitized with metal free D-149 dye together with liquid electrolyte comprising with 0.5 M tetrapropyl ammonium iodide and 0.05 M iodine in a mixture of acetonitrile and ethylene carbonate (1:4 by volume) delivered a short circuit current density of 10.4 mA cm?2 with an open circuit voltage of 530 mV under the illumination of 100 mW cm?2 (AM1.5) having an efficiency of 3.1%. As evident from the FTIR measurement, strong surface passivation of recombination centers of SnO2 crystallites due to the dual mode of attachment of dye molecules to the surface of SnO2 via both COOH and S–O direct bond might be the possible reason for this enhancement in these SnO2 based cells.  相似文献   

8.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

9.
A novel and simple immobilization strategy for biotinylated biological macromolecules onto electropolymerized poly(pyrrole-nitrilotriacetic acid)(NTA)–Cu2+ films without avidin as connecting bridge is reported. After complexation of Cu2+ by the polymerized NTA chelator, biotinylated biomolecules were immobilized by coordination of the biotin groups on the NTA–Cu2+ complex. The anchoring of biotinylated glucose oxidase was demonstrated by fluorescent characterization via FITC-labeled avidin and amperometric measurement of glucose. The resulting calibration curve led to a sensitivity and maximum current density values of 0.6 mA mol?1 L cm? 2 and 13.2 μA cm? 2, respectively. Thus, biotinylated polyphenol oxidase was fixed leading to a catechol sensor with a sensitivity of 656 mA mol?1 L cm? 2 and maximum current density of 25.4 μA cm? 2. This system was also applied to the efficient immobilization of biotinylated DNA, illustrated by impedimetric detection of the formation of the DNA duplex.  相似文献   

10.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

11.
The hydrogen production by water electrolysis was tested with different electrocatalysts (molybdenum, nickel, iron alloys containing chromium, manganese and nickel) using aqueous solutions of ionic liquid (IL) like 1-butyl-3-methylimidazolium tetrafluoroborate (BMI.BF4). The hydrogen evolution reaction (HER) was performed at room temperature in a potential of −1.7 V (PtQRE). A Hoffman cell apparatus was used to water electrolysis with current density values, j, between 14.6 mA cm−2 (for Ni electrode) and 77.5 mA cm−2 (for Mo electrode). The system efficiency was very high for all electrocatalysts tested, between 97.0% and 99.2%. The energy activation values of HER was determined in an aqueous solution of BMI.BF4 10 vol.%, using platinum (23.40 kJ mol−1) and Mo (9.22 kJ mol−1) as electrocatalysts. The results show that the hydrogen production in IL electrolyte can be carried out with cheap material at room temperature, which makes this method economically attractive.  相似文献   

12.
A direct borohydride fuel cell with a Pd/Ir catalysed microfibrous carbon cathode and a gold-catalysed microporous carbon cloth anode is reported. The fuel and oxidant were NaBH4 and H2O2, at concentrations within the range of 0.1–2.0 mol dm−3 and 0.05–0.45 mol dm−3, respectively. Different combinations of these reactants were examined at 10, 25 and 42 °C. At constant current density between 0 and 113 mA cm−2, the Pd/Ir coated microfibrous carbon electrode proved more active for the reduction of peroxide ion than a platinised-carbon one. The maximum power density achieved was 78 mW cm−2 at a current density of 71 mA cm−2 and a cell voltage of 1.09 V.  相似文献   

13.
Photocurrent was observed upon monochromatic illumination of an ITO electrode coated with a TiO2 nanocrystalline mesoporous membrane with carotenoid 8′-apo-β-caroten-8′-oic acid (ACOA) deposited as a sensitizer (illuminated area 0.25 cm2) and immersed in an aqueous 10 mM hydroquinone (H2Q), 0.1 M NaH2PO4 solution (pH = 7.4) purged with argon, using a platinum flag counter electrode (area 3.3 cm2) and a SCE reference electrode. The carotenoid-sensitized short-circuit photocurrent reached 4.6 μA/cm2 upon a 40 μW/cm2 incident light beam at 426 nm, with an IPCE (%, incident monochromatic photon-to-photocurrent conversion efficiency) as high as 34%. The short-circuit photocurrent was stable during 1 h of continuous illumination with only a 10% decrease. An open-circuit voltage of 0.15 V was obtained (upon 426 nm, 40 μW/cm2 illumination) which remained at a constant value for hours. The observed open-circuit voltage is close to the theoretical value (0.22 V) expected in such a system. The action spectrum resembled the absorption spectrum of ACOA bound on the TiO2 membrane with a maximum near 426 nm. No decay of the ACOA on the TiO2 surface was observed after 12 h, presumably because of rapid regeneration of ACOA from ACOA+ at the surface by electron transfer from H2Q.  相似文献   

14.
We show a great possibility of mediated enzymatic bioelectrocatalysis in the formate oxidation and the carbon dioxide (CO2) reduction at high current densities and low overpotentials. Tungsten-containing formate dehydrogenase (FoDH1) from Methylobacterium extorquens AM1 was used as a catalyst and immobilized on a Ketjen Black-modified electrode. For the formate oxidation, a high limiting current density (jlim) of ca. 24 mA cm 2 was realized with a half wave potential (E1/2) of only 0.12 V more positive than the formal potential of the formate/CO2 couple (E°′CO2) at 30 °C in the presence of methyl viologen (MV2 +) as a mediator, and jlim reached ca. 145 mA cm 2 at 60 °C. Even when a viologen-functionalized polymer was co-immobilized with FoDH1 on the porous electrode, jlim of ca. 30 mA cm 2 was attained at 60 °C with E1/2 = E°′CO2 + 0.13 V. On the other hand, the CO2 reduction was also realized with jlim  15 mA cm 2 and E1/2 = E°′CO2  0.04 V at pH 6.6 and 60 °C in the presence of MV2 +.  相似文献   

15.
Diverse fused thiophenes with electron-rich and electron-deficient blocks have been synthesized and employed as the π-conjugated spacers of organic dyes for the dye-sensitized solar cells (DSSCs). The effects of these fused thiophenes were investigated by their absorption spectra, electrochemical and photovoltaic properties. For a typical device a maximum power conversion efficiency of 6.11% was obtained under simulated AM 1.5 irradiation (100 mW cm?2): a short-circuit current (JSC) of 14.47 mA cm?2, an open-circuit voltage (VOC) of 670 mV, and a fill factor (FF) of 0.63.  相似文献   

16.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors.  相似文献   

17.
A clean and simple electrodeposition method without the use of any organic additives has been reported to prepare platinum nanoparticles with preferential (100) orientation directly on the conductive substrate. The formation of platinum nanoparticles exposing (100) facets was confirmed by electrochemical methods and high-resolution transmission electron microscopy. The fraction of Pt (100) sites increases as the electrodeposition current density increases from 0.2 to 10 mA cm 2. Furthermore, as the Pt (100) fraction increases, the specific activity of the Pt particles for ammonia oxidation increases obviously.  相似文献   

18.
The present work reports the enhancement of the photoelectrochemical water splitting performance of in-situ silicon (Si)-doped nanotubular/nanoporous (NT/NP) layers. These layers were grown by self-organizing anodization on Fe-Si alloys of various Si content. The incorporation of Si is found to retard the layer growth rates, leads to a more pronounced nanotubular morphology, and most importantly, an improved photoelectrochemical behavior. By increasing Si content from 1, 2 to 5 at.% in the iron oxide NT/NP photoanodes, the photocurrent onset potential shifts favorably to lower values. At 1.3 V vs. RHE, hematite layer with 5 at.% Si shows a 5-fold increase of the photocurrent, i.e. 0.5 mA cm 2 in comparison to 0.1 mA cm 2 for the undoped samples. The study also reveals that a suitable layer thickness is essential to achieve a beneficial effect of the Si doping.  相似文献   

19.
Oxygen reduction reaction (ORR) activities were evaluated for clean Pt(111) and Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy. Exposure of clean Pt(111) to 1.0 L CO at 303 K produced linear-bonded and bridge-bonded CO-Pt IR bands at 2093 and 1858 cm? 1. In contrast, 0.3-nm-thick Ni deposited on Pt(111) at 573 K (573 K-Ni0.3 nm/Pt(111)) produced broad IR bands for adsorbed CO at around 2070 cm? 1; the separation of reflection high-energy electron diffraction (RHEED) streaks is slightly wider for 573 K-Ni0.3 nm/Pt(111) than for the clean Pt(111). For 823 K-Ni0.3 nm/Pt(111), the separation of the RHEED streaks is the same as that for the Pt(111), and a single sharp IR band due to adsorbed CO is located at 2082 cm? 1. The results suggest that for the 823 K-Ni0.3 nm/Pt(111), a Pt-enriched outermost surface (Pt-skin) was formed through surface segregation of the substrate Pt atoms. ORR activities for the 573 K- and 823 K-Ni0.3 nm/Pt(111) as determined from linear sweep voltammetry curves were five times and eight times higher than that for clean Pt(111), respectively, demonstrating that Pt-skin generation is crucial for developing highly active electrode catalysts for fuel cells.  相似文献   

20.
The carbon fibrous mats with high conductivity (50 S cm−1) formed by carbon nanofibers with an average diameter of ∼150 nm have been fabricated by thermally treating the electrospun polyacrylonitrile fibers. The platinum clusters are electrodeposited on the carbon nanofibrous mats (CFMs) by multi-cycle CV method. In contrast to the catalytic peak current of methanol oxidation on commercial catalyst (185 mA mg−1 Pt), the catalytic peak current on optimum Pt/CFM electrode reaches to ∼420 mA mg−1 Pt despite of the large size (50–200 nm) of the Pt clusters, revealing that the special structure of carbon fibrous mats is favorable to improve the performance of catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号