首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This paper is concerned with the existence of traveling wave fronts for delayed non-local diffusion systems without quasimonotonicity, which can not be answered by the known results. By using exponential order, upper-lower solutions and Schauder's fixed point theorem, we reduce the existence of monotone traveling wave fronts to the existence of upper-lower solutions without the requirement of monotonicity. To illustrate our results, we establish the existence of traveling wave fronts for two examples which are the delayed non-local diffusion version of the Nicholson's blowflies equation and the Belousov-Zhabotinskii model. These results imply that the traveling wave fronts of the delayed non-local diffusion systems without quasimonotonicity are persistent if the delay is small.  相似文献   

2.
This paper is concerned with the existence of traveling wave solutions of a delayed predator–prey system with stage structure and nonlocal diffusion. By introducing the partial quasi-monotone condition and cross-iteration scheme, we first consider a class of delayed systems with nonlocal diffusion and deduce the existence of traveling wave solutions to the existence of a pair of upper–lower solutions. When the result is applied to the predator–prey system, we establish the existence of traveling wave solutions, as well as its precisely asymptotic behavior. Our result implies that there is a transition zone moving from the steady state with no species to the steady state with the coexistence of both species.  相似文献   

3.
This paper deals with the existence of traveling wave solutions for n‐dimensional delayed reaction–diffusion systems. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper–lower solutions that are easy to construct. As an application, we apply our main results to a four‐dimensional delayed predator–prey system and obtain the existence of traveling wave solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with the existence of traveling wave solutions in delayed nonlocal diffusion systems with mixed monotonicity. Based on two different mixed-quasimonotonicity reaction terms, we propose new definitions of upper and lower solutions. By using Schauder's fixed point theorem and a new cross-iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of upper and lower solutions. The general results obtained have been applied to type-K monotone and type-K competitive nonlocal diffusive Lotka-Volterra systems.  相似文献   

5.
This paper deals with the existence of traveling wave solutions of a class of delayed system of lattice differential equations, which formulates the invasion process when two competitive species are invaders. Employing the comparison principle of competitive systems, a new cross-iteration scheme is given to establish the existence of traveling wave solutions. More precisely, by the cross-iteration, the existence of traveling wave solutions is reduced to the existence of an admissible pair of upper and lower solutions. To illustrate our main results, we prove the existence of traveling wave solutions in two delayed two-species competition systems with spatial discretization. Our results imply that the delay appeared in the interspecific competition terms do not affect the existence of traveling wave solutions.  相似文献   

6.
In this paper, we consider the existence of traveling wave solutions in delayed higher dimensional lattice differential systems with partial monotonicity. By relaxing the monotonicity of the upper solutions and allowing it greater than positive equilibrium point, we establish the existence of traveling wave solutions by means of Schauder's fixed point theorem. And then, we apply our results to delayed competition‐cooperation systems on higher dimensional lattices.  相似文献   

7.
In this paper, we study a nonlocal diffusion equation with a general diffusion kernel and delayed nonlinearity, and obtain the existence, nonexistence and uniqueness of the regular traveling wave solutions for this nonlocal diffusion equation. As an application of the results, we reconsider some models arising from population dynamics, epidemiology and neural network. It is shown that there exist regular traveling wave solutions for these models, respectively. This generalized and improved some results in literatures.  相似文献   

8.
In this paper, we investigate a system of delayed lattice differential equations with partial monotonicity. By using Schauder's fixed point theorem, a new cross-iteration scheme is given to establish the existence of traveling wave solutions. Our main results can deal with the existence of traveling wave solution for a class of delayed reaction diffusion system with partial monotonicity and generalize the results of Wu and Zou (J. Differential Equations 135 (1997) 315–357).  相似文献   

9.
This paper deals with the existence of traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity. Based on two different mixed-quasi monotonicity reaction terms, we propose new conditions on the reaction terms and new definitions of upper and lower solutions. By using Schauder’s fixed point theorem and a new cross-iteration scheme, we reduce the existence of traveling wave solutions to the existence of a pair of upper and lower solutions. The general results obtained have been applied to type-K monotone and type-K competitive diffusive Lotka-Volterra systems.  相似文献   

10.
This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme, we establish some existence results of traveling wave solutions. The results are applied to a nonlocal diffusion model which takes the three-species Lotka-Volterra model as its special case.  相似文献   

11.
In this paper, we study the traveling waves of a delayed SIRS epidemic model with nonlocal diffusion and a class of nonlinear incidence rates. When the basic reproduction ratio $\mathscr{R}_0>1$, by using the Schauder''s fixed point theorem associated with upper-lower solutions, we reduce the existence of traveling waves to the existence of a pair of upper-lower solutions. By constructing a pair of upper-lower solutions, we derive the existence of traveling wave solutions connecting the disease-free steady state and the endemic steady state. When $\mathscr{R}_0<1$, the nonexistence of traveling waves is obtained by the comparison principle.  相似文献   

12.
We study the existence of traveling wave solutions for a nonlocal and non-monotone delayed reaction-diffusion equation. Based on the construction of two associated auxiliary reaction diffusion equations with monotonicity and by using the traveling wavefronts of the auxiliary equations, the existence of the positive traveling wave solutions for c 〉 c. is obtained. Also, the exponential asymptotic behavior in the negative infinity was established. Moreover, we apply our results to some reactiondiffusion equations with spatio-temporal delay to obtain the existence of traveling waves. These results cover, complement and/or improve some existing ones in the literature.  相似文献   

13.
In this paper, we first reduce the existence of traveling wave solutions in a delayed lattice competition-cooperation system to the existence of a pair of upper and lower solutions by means of Schauder’s fixed point theorem and the cross iteration scheme, and then we construct a pair of upper and lower solutions to obtain the existence and nonexistence of traveling wave solutions. We also consider the asymptotic behaviour of any nonnegative traveling wave solutions at negative infinity.  相似文献   

14.
In this paper we revisit the existence of traveling waves for delayed reaction-diffusion equations by the monotone iteration method. We show that Perron Theorem on existence of bounded solution provides a rigorous and constructive framework to find traveling wave solutions of reaction-diffusion systems with time delay. The method is tried out on two classical examples with delay: the predator-prey and Belousov-Zhabotinskii models.  相似文献   

15.
The paper is concerned with the existence and qualitative features of entire solutions for delayed reaction diffusion monostable systems. Here the entire solutions mean solutions defined on the $ (x,t)\in\mathbb{R}^{N+1} $. We first establish the comparison principles, construct appropriate upper and lower solutions and some upper estimates for the systems with quasimonotone nonlinearities. Then, some new types of entire solutions are constructed by mixing any finite number of traveling wave fronts with different speeds $ c\geq c_* $ and propagation directions and a spatially independent solution, where $c_*>0$ is the critical wave speed. Furthermore, various qualitative properties of entire solutions are investigated. In particularly, the relationship between the entire solution, the traveling wave fronts and a spatially independent solution are considered, respectively. At last, for the nonquasimonotone nonlinearity case, some new types of entire solutions are also investigated by introducing two auxiliary quasimonotone controlled systems and establishing some comparison theorems for Cauchy problems of the three systems.  相似文献   

16.
This paper deals with the traveling wave fronts of a delayed population model with nonlocal dispersal. By constructing proper upper and lower solutions, the existence of the traveling wave fronts is proved. In particular, we show such a traveling wave front is strictly monotone.  相似文献   

17.
In this paper we first investigate the existence of traveling wave fronts in a delayed diffusive competition system by constructing a pair of upper and lower solutions. Then we consider the asymptotic behavior of traveling wave solutions at the minus/plus infinity by means of the bilateral Laplace transform. Finally, the monotonicity and uniqueness (up to the translation) of traveling wave solutions are also obtained by the strong comparison principle and the sliding method.  相似文献   

18.
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction–diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of \(c\ge c^*\) for the degenerate reaction–diffusion equation without delay, where \(c^*>0\) is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay \(\tau >0\). Furthermore, we prove the global existence and uniqueness of \(C^{\alpha ,\beta }\)-solution to the time-delayed degenerate reaction–diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted \(L^1\)-space. The exponential convergence rate is also derived.  相似文献   

19.
In this paper, we study the traveling wave solutions of a delayed diffusive SIR epidemic model with nonlinear incidence rate and constant external supplies. We find that the existence of traveling wave solutions is determined by the basic reproduction number of the corresponding spatial‐homogenous delay differential system and the minimal wave speed. The existence is proved by applying Schauder's fixed point theorem and Lyapunov functional method. The non‐existence of traveling waves is obtained by two‐sided Laplace transform. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Motivated by the theory of phase transition dynamics, we consider one-dimensional, nonlinear hyperbolic conservation laws with nonconvex flux-function containing vanishing nonlinear diffusive-dispersive terms. Searching for traveling wave solutions, we establish general results of existence, uniqueness, monotonicity, and asymptotic behavior. In particular, we investigate the properties of the traveling waves in the limits of dominant diffusion, dominant dispersion, and asymptotically small or large shock strength. As the diffusion and dispersion parameters tend to 0, the traveling waves converge to shock wave solutions of the conservation law, which either satisfy the classical Oleinik entropy criterion or are nonclassical undercompressive shocks violating it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号