首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical CO2 reduction reaction (CO2RR) either to generate multicarbon (C2+) or single carbon (C1) value-added products provides an effective and promising approach to mitigate the high CO2 concentration in the atmosphere and promote energy storage. However, cost-effectiveness of catalytic materials limits practical application of this technology in the short term. Herein, we summarize and discuss recent and advanced works on cost-effective oxide-derived copper catalysts for the generation of C2+ products (hydrocarbons and alcohols) and transition metal–nitrogen–doped carbon electrocatalytic materials for C1 compounds production from CO2RR. We think they represent suitable electrocatalyst candidates for scaling up electrochemical CO2 conversion. This short review may provide inspiration for the future design and development of innovative active, cost-effective, selective and stable electrocatalysts with improved properties for either the production of C2+ (alcohols, hydrocarbons) or carbon monoxide from CO2RR.  相似文献   

2.
An electrochemical reduction of UO2 to U in a LiCl–KCl-Li2O molten salt has been investigated in this study. A diagram showing equilibrium potentials (relative to Cl2/Cl?) plotted versus the negative logarithms of oxide-ion activity (pO2?) was constructed. The crushed UO2 pellets in the cathode basket of an electrolytic reducer were successfully reduced to U. The reduction of UO2 is proved to proceed mainly through chemical reaction with in situ generated Li and K at the cathode. The control of cathode potential is essential to prevent the deposition and subsequent vaporization of K metal at the cathode for the applications of a LiCl–KCl-Li2O molten salt as an electrolyte for the metal production from its oxide sources.  相似文献   

3.
The electrochemical reduction behavior of bilirubin (BR) at platinum electrode in DMF was investigated by cyclic voltammetry, in situ electron spin resonance spectroscopy and in situ rapid scanning thin layer spectroelectrochemistry. Experimental results revealed that thereduction of BR firstly undergoes an ECE process: BR-+e BR-dimerize (BR)22- +e(BR)23-. The generated (BR)23- can be re-oxidized to BR and then to purpurin (Pu) by a series of oxidation processes:(BR)23- -e (BR)22- -2e 2BR, BR --2e BV --2e Pu. However, the re-reduction reactions of Pu are not the reverse processes. The different reduction mechanisms are discussed in detail.  相似文献   

4.

CO2 and steam/CO2 electroreduction to CO and methane in solid oxide electrolytic cells (SOEC) has gained major attention in the past few years. This work evaluates, for the very first time, the performance of two different ZnO–Ag cathodes: one where ZnO nanopowder was mixed with Ag powder for preparing the cathode ink (ZnOmix–Ag cathode) and the other one where Ag cathode was infiltrated with a zinc nitrate solution (ZnOinf –Ag cathode). ZnOmix–Ag cathode had a better distribution of ZnO particles throughout the cathode, resulting in almost double CO generation while electrolysing both dry CO2 and H2/CO2 (4:1 v/v). A maximum overall CO2 conversion of 48% (in H2/CO2) at 1.7 V and 700 °C clearly indicated that as low as 5 wt% zinc loading is capable of CO2 electroreduction. It was further revealed that for ZnOinf –Ag cathode, most of CO generation took place through RWGS reaction, but for ZnOmix–Ag cathode, it was the synergistic effect of both RWGS reaction and CO2 electrolysis. Although ZnOinf –Ag cathode produced trace amount of methane at higher voltages, with ZnOmix–Ag cathode, there was absolutely no methane. This seems to be due to strong electronic interaction between Zn and Ag that might have suppressed the catalytic activity of the cathode towards methanation.

  相似文献   

5.
Herein, a direct, metal-free, and site-selective electrochemical C−H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C−H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C−H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.  相似文献   

6.
Various Pt catalysts (Pt/ZrO2, Pt/CeO2, Pt/CeZrO, Pt/WO3/ZrO2 and Pt/WO3/CeZrO) were prepared and characterized, and their catalytic reduction reactions of NO by CO, with or without the presence of excess oxygen, were investigated. The results of temperature-programmed experiments showed that CO could be easily oxidized over Pt/CeO2 and Pt/CeZrO while the introduction of WO3 into the catalyst (Pt/WO3/CeZrO) inhibited the reduction of catalyst surface; NO could not dissociate over those catalysts in oxidized state but after CO reduction at a low temperature, NO dissociation took place only over Pt/CeO2 and Pt/CeZrO catalysts. For NO + CO reaction, those easily reduced catalysts Pt/CeO2 and Pt/CeZrO exhibited better catalytic performances, and NO could be rapidly converted below 350 °C. For the reaction with the presence of excess O2, the NO conversions were significantly inhibited, but better NO conversions were obtained over the tungstate-contained catalysts when compared with Pt/CeO2 and Pt/CeZrO. The higher activities of Pt/W–Ce–Zr catalysts were attributed to their high acidities.  相似文献   

7.
8.
Here we report that the nanoropes and terraced micropyramids of In–Sb semiconductors can be successfully synthesized at room temperature. The electrochemical route shows a simple, quick and economical method for the preparation of various In–Sb semiconductor nanostructures. The possible formation mechanisms of In–Sb nanoropes and terraced micropyramids are proposed in this paper. The UV–vis absorption spectra of the prepared In–Sb nanoropes and terraced micropyramids were recorded to reveal the correlation between the optical properties and the morphologies of the samples.  相似文献   

9.

In this paper, combined heat and power frameworks employing solid oxide fuel cell power module and a small-scale gas turbine are presented. The offered system is utilized as heat and power supply for residential consumers with a carbon dioxide sorption circulating fluidized bed. As well a favorable solution for the high penalties associated with CO2 capture and reuse of the CO contents is offered. The combined heat and power system considered by a different arrangement in order to high proficiency, controllability, heat recovery and high capacity of energy. In the proposed system, the unburned product from the solid oxide fuel cell is re-extracted and utilized as a fuel source. The suggested system is analyzed by the first and second law of thermodynamics. During this study, comprehensive calculations of chemistry and thermal within the fuel cell are performed to get accurate results. The impact of various parameters, for example fuel and oxidant rate, carbon dioxide removal, operating pressure, compressor parameter on work and heat output of the cycle as well as the discharge of carbon dioxide contamination, is investigated. The optimal pressure ratio of the compressor to minimize the carbon dioxide production is found.

  相似文献   

10.
Novel core–shell SDC (Ce0.8Sm0.2O1.9)/amorphous Na2CO3 nanocomposite was prepared for the first time. The core–shell nanocomposite particles are smaller than 100 nm with amorphous Na2CO3 shell of 4–6 nm in thickness. The nanocomposite electrolyte shows superionic conductivity above 300 °C, where the conductivity reaches over 0.1 S cm−1. Such high conductive nanocomposite has been applied in low-temperature solid oxide fuel cells (LTSOFCs) with an excellent performance of 0.8 W cm−2 at 550 °C. A new potential approach of designing and developing superionic conductors for LTSOFCs was presented to develop interface as ‘superionic highway’ in two-phase materials based on coated SDC.  相似文献   

11.

Nanofluids of Li2CO3–Na2CO3–K2CO3 improved by three nano-Al2O3 samples are firstly prepared by means of two-step aqueous method to enhance thermal properties for high-temperature heat transfer, when used as heat transfer fluids and thermal energy systems for concentrating solar power systems. Specific heat of ternary carbonates containing Al2O3 of 0.2, 0.4, 0.8, 1.0, 1.4 and 2.0 mass% is measured, and nanofluids with 1.0 mass% of 20-nm Al2O3, 1.0 mass% of 50-nm Al2O3 and 0.8 mass% of 80-nm Al2O3 are selected as superior candidates. The maximum enhancement of specific heat is 18.5% in solid and 33.0% in liquid, 17.9% in solid and 22.7% in liquid, 13.2% in solid and 17.5% in liquid for nanofluids containing 20-, 50- and 80-nm Al2O3. Thermal conductivity is, respectively, improved by 23.3, 28.5 and 30.9% under the addition of Al2O3. New chemical bonds and crystals are scarcely formed in composites through FT-IR and XRD determination. SEM images certify that nano-Al2O3 are homogeneously mixed into nanofluids and this structure may be a critical incentive for enhancing thermal properties. There are no significant changes with respect to the heat flow, melting/freezing point and latent heat after the 30 circles of determination. Briefly, it can be speculated that these nanofluids will exhibit tremendous potential in the coming applications of heat transfer and thermal storage for concentrating solar power systems.

  相似文献   

12.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

13.
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im ) with imidazole groups as a new electrocatalyst for eCO2RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm−2. No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm−2. The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.  相似文献   

14.
The lithium (Li)–air battery has an ultrahigh theoretical specific energy, however, even in pure oxygen (O2), the vulnerability of conventional organic electrolytes and carbon cathodes towards reaction intermediates, especially O2, and corrosive oxidation and crack/pulverization of Li metal anode lead to poor cycling stability of the Li-air battery. Even worse, the water and/or CO2 in air bring parasitic reactions and safety issues. Therefore, applying such systems in open-air environment is challenging. Herein, contrary to previous assertions, we have found that CO2 can improve the stability of both anode and electrolyte, and a high-performance rechargeable Li–O2/CO2 battery is developed. The CO2 not only facilitates the in situ formation of a passivated protective Li2CO3 film on the Li anode, but also restrains side reactions involving electrolyte and cathode by capturing O2. Moreover, the Pd/CNT catalyst in the cathode can extend the battery lifespan by effectively tuning the product morphology and catalyzing the decomposition of Li2CO3. The Li–O2/CO2 battery achieves a full discharge capacity of 6628 mAh g−1 and a long life of 715 cycles, which is even better than those of pure Li–O2 batteries.  相似文献   

15.
We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1?xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - In this study, an electro-thermo-structural coupled numerical analysis is conducted to evaluate the thermal, electrical, and structural performances of...  相似文献   

17.
High surface area carbon-supported Pt and bimetallic Pt–Fe catalysts are investigated for the oxygen electro-reduction reaction (ORR) in low-temperature direct methanol fuel cells (60 °C). The electrocatalysts are prepared using a combination of colloidal and incipient wetness methods allowing the synthesis of carbon-supported bimetallic nanoparticles with a particle size of about 2–3 nm. These materials are studied in terms of structure, morphology and composition using X-ray diffraction, X-ray fluorescence and transmission electron microscopy techniques. The electrocatalytic behaviour of these catalysts for ORR is investigated by employing the rotating disc technique. An enhancement of the ORR is observed with the bimetallic Pt–Fe catalyst in the oxygen-saturated electrolyte solution, with and without methanol. Dedicated to Prof. Dr. Teresa Iwasita on the occasion of her 65th birthday in recognition of her numerous contributions to interfacial electrochemistry.  相似文献   

18.
Nitrate-containing industrial wastewater poses a serious threat to the global food security and public health safety. As compared to the traditional microbial denitrification, electrocatalytic nitrate reduction shows better sustainability with ultrahigh energy efficiency and the production of high-value ammonia (NH3). However, nitrate-containing wastewater from most industrial processes, such as mining, metallurgy, and petrochemical engineering, is generally acidic, which contradicts the typical neutral/alkaline working conditions for both denitrifying bacteria and the state-of-the-art inorganic electrocatalysts, leading to the demand for pre-neutralization and the problematic hydrogen evaluation reaction (HER) competition and catalyst dissolution. Here, we report a series of Fe2M (M=Fe, Co, Ni, Zn) trinuclear cluster metal–organic frameworks (MOFs) that enable the highly efficient electrocatalytic nitrate reduction to ammonium under strong acidic conditions with excellent stability. In pH=1 electrolyte, the Fe2Co-MOF demonstrates the NH3 yield rate of 20653.5 μg h−1 mg−1site with 90.55 % NH3-Faradaic efficiency (FE), 98.5 % NH3-selectivity and up to 75 hr of electrocatalytic stability. Additionally, successful nitrate reduction in high-acidic conditions directly produce the ammonium sulfate as nitrogen fertilizer, avoiding the subsequent aqueous ammonia extraction and preventing the ammonia spillage loss. This series of cluster-based MOF structures provide new insights into the design principles of high-performance nitrate reduction catalysts under environmentally-relevant wastewater conditions.  相似文献   

19.
《Fluid Phase Equilibria》2002,200(1):111-119
The tautomeric equilibrium constant KC of ethyl acetoacetate (EAA) in CO2n-pentane and CO2–ethanol was studied by UV–VIS spectroscopy at 308.2 K over the pressure range from 6.5 to 9.0 MPa. This work focuses on how the tautomeric equilibrium changes with pressure and composition of the mixed solvents in the near critical region. The results showed that the effect of pressure on KC was very limited at pressures much higher than the phase separation pressures. However, the KC increased sharply as the pressure approached the critical point or the bubble point of the mixed solvents.  相似文献   

20.
Organic electrode materials (OEMs) are being investigated as promising candidates for aqueous zinc-ion batteries (AZIBs) owing to their environmental friendliness, cost-effectiveness, and structural diversity, and tunability. Understanding the correlation between structural regulation of OEMs and their electrochemical property in AZIBs is vital to rational design of OEMs. Herein, we first discuss the fundamentals of the energy storage mechanism of OEMs. Then, strategies to improve the electrochemical performance, including the specific capacity, voltage, rate capability, and cycling stability, are elaborated from the perspective of molecular engineering. Finally, we share our views on the remaining challenges and prospects of OEMs in AZIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号