首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diallyl polysulfanes, such as diallyl trisulfide and diallyl tetrasulfide, are regarded as a group of potential chemopreventive compounds as they have been proven to be effective inhibitors of cancer cells. These agents have been implicated in signal transductions, including the generation of Reactive Oxygen Species (ROS), Endoplasmic Reticulum (ER) stress, mitogen-activated protein kinase (MAPK) signaling, regulation of cell cycle progression, and induction of apoptosis. Nonetheless, certain aspects of the diallyl polysulfane triggered inhibitory effects on cancer cells are still not clear. Understanding the targeted signaling pathways may help to develop new strategies to treat cancer and other diseases. This review is therefore aimed at addressing the targeting of specific intracellular signal transduction cascades by these diallyl polysulfanes in order to shed some light on possible mechanisms of action of these compounds.  相似文献   

2.
邓斌  罗国安 《分析化学》2003,31(2):232-238
细胞信号传导是近年来生命科学研究的热点之一。有关蛋白转录后修饰 (如蛋白质磷酸化、乙酰化、糖基化等 ) ,信号肽序列测定 ,信号传导途径和多通道调节方式 ,蛋白自折叠及构象变化 ,小分子脂类信号分子等研究由于质谱技术的快速发展而取得了突破性的进展  相似文献   

3.
A wide range of external stress stimuli triggers a plant cell to undergo a complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. These secondary metabolites help the plant to survive under stress challenge. The potential of biotic and abiotic elicitors for the induction and enhancement of secondary metabolite production in various culture systems including hairy root (HR) cultures is well-known. The elicitor-induced defense responses involves signal perception of elicitor by a cell surface receptor followed by its transduction involving some major cellular and molecular events including activation of major secondary message signaling pathways. This result in induction of gene expressions escorting to the synthesis of various proteins mainly associated with plant defense responses and secondary metabolite synthesis and accumulation. The review discusses the elicitor-induced various cellular and molecular events and correlates them with enhanced secondary metabolite synthesis in HR systems. Further, this review also concludes that combining elicitation with in-silico approaches enhances the usefulness of this practice in better understanding and identifying the rate-limiting steps of biosynthetic pathways existing in HRs which in turn can contribute towards better productivity by utilizing metabolic engineering aspects.  相似文献   

4.
Light signal transduction pathways are the central components of mechanisms that regulate plant development, in which photoreceptors receive light and participate in light signal transduction. Chemical systems can be designed to mimic these biological processes that have potential applications in smart sensing, drug delivery and synthetic biology. Here, we synthesized a series of simple photoresponsive molecules for use as photoreceptors in artificial light signal transduction. The hydrophobic structures of these molecules facilitate their insertion into vesicular lipid bilayers, and reversible photoisomerization initiates the reciprocating translocation of molecules in the membrane, thus activating or deactivating the hydrolysis reaction of a precatalyst in the transducer for an encapsulated substrate, resulting in a light controllable output signal. This study represents the first example of using simplified synthetic molecules to simulate light signal transduction performed by complex biomolecules.

Photoisomerization chemistry was used to simulate light signal transduction, in which the light-controlled reciprocating translocation of molecules in lipids activates or deactivates the hydrolysis reaction for an encapsulated substrate.  相似文献   

5.
Photoreceptors are chromoproteins that undergo fast conversion from dark to signaling states upon light absorption by the chromophore. The signaling state starts signal transduction in vivo and elicits a biological response. Therefore, photoreceptors are ideally suited for analysis of protein activation by time-resolved spectroscopy. We focus on plant cryptochromes which are blue light sensors regulating the development and daily rhythm of plants. The signaling state of these flavoproteins is the neutral radical of the flavin chromophore. It forms on the microsecond time scale after light absorption by the oxidized state. We apply here femtosecond broad-band transient absorption to early stages of signaling-state formation in a plant cryptochrome from the green alga Chlamydomonas reinhardtii. Transient spectra show (i) subpicosecond decay of flavin-stimulated emission and (ii) further decay of signal until 100 ps delay with nearly constant spectral shape. The first decay (i) monitors electron transfer from a nearby tryptophan to the flavin and occurs with a time constant of τ(ET) = 0.4 ps. The second decay (ii) is analyzed by spectral decomposition and occurs with a characteristic time constant τ(1) = 31 ps. We reason that hole transport through a tryptophan triad to the protein surface and partial deprotonation of tryptophan cation radical hide behind τ(1). These processes are probably governed by vibrational cooling. Spectral decomposition is used together with anisotropy to obtain the relative orientation of flavin and the final electron donor. This narrows the number of possible electron donors down to two tryptophans. Structural analysis suggests that a set of histidines surrounding the terminal tryptophan may act as proton acceptor and thereby stabilize the radical pair on a 100 ps time scale.  相似文献   

6.
Intracellular signaling can be monitored in vivo in living cells by genetically encoded intracellular fluorescent probes. In this review, three aspects of these probes are introduced: 1) the imaging dynamics of endogenous mitochondrial RNA; 2) nuclear receptor and coactivator/corepressor interactions, and; 3) the signal sequence in mitochondrial intermembrane space. These probes are generally applicable to fundamental biological studies as well as for assaying and screening possible pharmaceutical or toxic chemicals that facilitate or inhibit cellular signaling pathways.  相似文献   

7.
8.
Communication between and inside cells as well as their response to external stimuli relies on elaborated systems of signal transduction. They all require a directional transmission across membranes, often realized by primary messenger docking onto external receptor units and subsequent internalization of the signal in form of a released second messenger. This in turn starts a cascade of events which ultimately control all functions of the living cell. Although signal transduction is a fundamental biological process realized by supramolecular recognition and multiplication events with small molecules, chemists have just begun to invent artificial models which allow to study the underlying rules, and one day perhaps to rescue damaged transduction systems in nature. This review summarizes the exciting pioneering efforts of chemists to create simple models for the basic principles of signal transduction across a membrane. It starts with first attempts to establish molecular recognition events on liposomes with embedded receptor amphiphiles and moves on to simple transmembrane signaling across lipid bilayers. More elaborated systems step by step incorporate more elements of cell signaling, such as primary and secondary messenger or a useful cellular response such as cargo release.  相似文献   

9.
Abstract Mitochondrial signaling is an information channel between the mitochondrial respiratory chain and the nucleus for the transduction signals regarding the functional state of the mitochondria. The present review examines the question whether radiation of visible and near-IR (IR-A) radiation can activate this retrograde-type cellular signaling pathway. Experimental data about modulation of elements of mitochondrial retrograde signaling by the irradiation (mitochondrial membrane potential DeltaPsi(m), reactive oxygen species ROS, Ca(2+), NO(*), pH(i), fission-fusion homeostasis of mitochondria) are reviewed. The terminal enzyme of the mitochondrial respiratory chain cytochrome c oxidase is considered as the photoacceptor. Functions of cytochrome c oxidase as a signal generator as well as a signal transducer in irradiated cells are outlined.  相似文献   

10.
The anterior-posterior and dorsal-ventral progression of heart organogenesis is well illustrated by the patterning and activity of two members of different families of cell adhesion molecules: the calcium-dependent cadherins, specifically N-cadherin, and the extracellular matrix glycoproteins, fibronectin. N-cadherin by its binding to the intracellular molecule beta-catenin and fibronectin by its binding to integrins at focal adhesion sites, are involved in regulation of gene expression by their association with the cytoskeleton and through signal transduction pathways. The ventral precardiac mesoderm cells epithelialize and become stably committed by the activation of these cell-matrix and intracellular signaling transduction pathways. Cross talk between the adhesion signaling pathways initiates the characteristic phenotypic changes associated with cardiomyocyte differentiation: electrical activity and organization of myofibrils. The development of both organ form and function occurs within a short interval thereafter. Mutations in any of the interacting molecules, or environmental insults affecting either of these signaling pathways, can result in embryonic lethality or fetuses born with severe heart defects. As an example, we have defined that exposure of the embryo temporally to lithium during an early sensitive developmental period affects a canonical Wnt pathway leading to beta-catenin stabilization. Lithium exposure results in an anterior-posterior progression of severe cardiac defects.  相似文献   

11.
Methods of analysis were presented for chemicals that promote or disrupt cellular signaling pathways. The developed analytical methods are based not only on receptor binding, but also on the following known molecular-level processes involved in signal transduction along signaling pathways, reconstituted in vitro or taken in part in living cells. The methods were discussed in relation to receptor binding assay and/or bioassay. Examples include: (1) Insulin signaling pathways; (1-i) Chemical selectivity of agonists for insulin signaling pathways based on agonist-induced phosphorylation of a target peptide; (1-ii) An SPR-based screening method for agonist selectivity for insulin signaling pathways based on the binding of phosphotyrosine to its specific binding protein; (1-iii) A fluorescent indicator for tyrosine phosphorylation-based insulin signaling pathways; (2) An optical method for evaluating ion selectivity for calcium signaling pathways in the cell; (3) Assay and screening of chemicals that disrupt cellular signaling pathways, potential endocrine disruptors in particular; (4) Protein conformational changes, and (5) A screening method for antigen-specific IgE using mast cells, based on intracellular calcium signaling.  相似文献   

12.
Light has a key impact on the outcome of biotic stress responses in plants by providing most of the energy and many signals for the deployment of defensive barriers. Within this context, chloroplasts are not only the major source of energy in the light; they also host biosynthetic pathways for the production of stress hormones and secondary metabolites, as well as reactive oxygen species and other signals which modulate nuclear gene expression and plant resistance to pathogens. Environmental, and in particular, light‐dependent regulation of immune responses may allow plants to anticipate and react more effectively to pathogen threats. As more information is gathered, increasingly complex models are developed to explain how light and reactive oxygen species signaling could interact with endogenous defense pathways to elicit efficient protective responses against invading microorganisms. The emerging picture places chloroplasts in a key position of an intricate regulatory network which involves several other cellular compartments. This article reviews current knowledge on the extent and the main features of chloroplast contribution to plant defensive strategies against biotic stress.  相似文献   

13.
具有抗炎、抗过敏活性磷脂酶抑制剂的研究进展   总被引:3,自引:0,他引:3  
王寅  朱再明  刘彦 《化学进展》1998,10(3):296-304
磷脂酶参与细胞跨膜信息传递, 磷脂酶A2 还是机体炎症、过敏介质产生的关键酶。因此, 磷脂酶抑制剂的合成研究对研究细胞表达某种功能的信息传递机制及与磷脂酶A2 激活相关的疾病治疗机制和药物研究具有重要意义。本文主要综述了近期有关磷脂酶A2 抑制剂的合成、结构、抑效性能、构效关系及应用前景等, 对磷脂酶C和磷脂酶D的抑制剂作了简要介绍。  相似文献   

14.
Su Z  Li H  Li Y  Ni F 《Chemistry & biology》2007,14(11):1273-1282
Morphologic transition from the yeast to the hyphal state in Candida albicans is associated with pathogenicity of this human pathogen. Such invasive transition of C. albicans cells is regulated by numerous cell signal transduction pathways, one of which involves a small GTPase, the C. albicans Cdc42 (CaCdcd42), with specific binding to downstream effectors, e.g., CaCla4 and Cst20, containing CRIB domains. Here, we report that in vivo inhibition of CaCdc42 by peptide-mediated transduction of the CRIB polypeptides can inactivate and even reverse the pathogenically related morphologic transition of C. albicans. The current work provides a promising strategy for disease intervention through disrupting protein-protein interactions in signal transduction pathways and brings the concept of signal transduction therapy into the front line of antifungal design as well as therapy for other signal transduction-related diseases.  相似文献   

15.
16.
17.
BACKGROUND: In eukaryotic cells, many intracellular signaling pathways have closely related mitogen activated protein kinase (MAPK) paralogs as central components. Although MAPKs are therefore obvious targets to control the cellular responses resulting from the activation of these signaling pathways, the development of inhibitors which target specific cell signaling pathways involving MAPKs has proven difficult. RESULTS: We used an RNA combinatorial approach to isolate RNAs that inhibit the in vitro phosphorylation activity of extracellular regulated kinase 2 (ERK2). These inhibitors block phosphorylation by ERK1 and ERK2, but do not inhibit Jun N-terminal kinase or p38 MAPKs. Kinetic analysis indicates these inhibitors function at high picomolar concentrations through the steric exclusion of substrate and ATP binding. In one case, we identified a compact RNA structural domain responsible for inhibition. CONCLUSIONS: RNA reagents can selectively recognize and inhibit MAPKs involved in a single signal transduction pathway. The methodology described here is readily generalizable, and can be used to develop inhibitors of MAPKs involved in other signal transduction pathways. Such reagents may be valuable tools to analyze and distinguish homologous effectors which regulate distinct signaling responses.  相似文献   

18.
Signal transduction governs virtually every cellular function of multicellular organisms, and its deregulation leads to a variety of diseases. This intricate network of molecular interactions is mediated by proteins that are assembled into complexes within individual signaling pathways, and their composition and function is often regulated by different post-translational modifications. Proteomic approaches are commonly used to analyze biological complexes and networks, but often lack the specificity to address the dynamic and hence transient nature of the interactions and the influence of the multiple post-translational modifications that govern these processes. Here we review recent developments in proteomic research to address these limitations, and discuss several technologies that have been developed for this purpose. The synergy between these proteomic and computational tools, when applied together with global methods to the analysis of individual proteins, complexes and pathways, may allow researchers to unravel the underlying mechanisms of signaling networks in greater detail than previously possible.  相似文献   

19.
The review covers some of the proposed cellular photoreceptors responsible for the effect of red and near infra-red (NIR) light on mammalian cells, including cytochrome-c-oxidase, photoactive porphyrins, flavoproteins, and molecular oxygen. We do not discuss the clinical studies but consider animal models, especially fibroblasts. Several key hypotheses such as mitochondria signaling and free-radical conception of the effects of red light and NIR light based on the changes in redox properties of photoreceptor molecules as well as membrane conception are examined. Special attention is paid to common mechanisms of light signaling in mammalian and plant organisms.  相似文献   

20.
Cells are crowded microenvironments filled with macromolecules undergoing constant physical and chemical interactions. The physicochemical makeup of the cells affects various cellular responses, determines cell-cell interactions and influences cell decisions. Chemical and physical properties differ between cells and within cells. Moreover, these properties are subject to dynamic changes in response to environmental signals, which often demand adjustments in the chemical or physical states of intracellular molecules. Indeed, cellular responses such as gene expression rely on the faithful relay of information from the outside to the inside of the cell, a process termed signal transduction. The signal often traverses a complex path across subcellular spaces with variable physical chemistry, sometimes even influencing it. Understanding the molecular states of such signaling molecules and their intracellular environments is vital to our understanding of the cell. Exploring such intricate spaces is possible today largely because of experimental and theoretical tools. Here, we focus on one tool that is commonly used in chemical physics studies-light. We summarize recent work which uses light to both visualize the cellular environment and also control intracellular processes along the axis of signal transduction. We highlight recent accomplishments in optical microscopy and optogenetics, an emerging experimental strategy which utilizes light to control the molecular processes in live cells. We believe that optogenetics lends unprecedented spatiotemporal precision to the manipulation of physicochemical properties in biological contexts. We hope to use this work to demonstrate new opportunities for chemical physicists who are interested in pursuing biological and biomedical questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号