首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Comptes Rendus Chimie》2014,17(12):1176-1183
This work is a study of Hg2+-doped TiO2 thin films deposited on silicon substrates prepared by sol–gel method and treated at temperatures ranging between 600 to 1000 °C for 2 h. The structural and optical properties of thin films have been studied using different techniques. We analyzed the vibrations of the chemical bands by Fourier transform infrared (FTIR) spectroscopy and the optical properties by UV–Visible spectrophotometry (reflection mode) and photoluminescence (PL). The X-ray diffraction and Raman spectra of TiO2 thin films confirmed the crystallization of the structure under the form of anatase, rutile, mercury titanate (HgTiO3) as a function of the annealing temperature. The observation by scanning electron microscopy (SEM) showed the changing morphology, with respect to nanostructures, nanosheets, nanotubes, with the annealing temperature. The diameters of nanotubes ranged from 50 nm to 400 nm. The photoluminescence and reflectance spectra indicated that these structures should enhance photocatalytic activity.  相似文献   

2.
Pure and (0.5–3 at%) vanadium doped TiO2 nanoparticles have been synthesized by wet chemical method. The as synthesized materials have been characterized by using XRD, atomic force microscope (AFM), Raman, EPR and UV–vis spectroscopy techniques. From XRD studies, both pure as well as vanadium doped TiO2 have been found to show pure anatase phase. The value of lattice constant c is smaller in doped TiO2 as compared to undoped and has been found to decrease with increase in vanadium concentration. AFM studies show formation of spherical particles with particle size ~23 nm in all the samples. Photochromic behavior of these materials has been studied by making their films in alkyd resin. Vanadium doped TiO2 films show reversible change in color from beige-yellow to brownish violet on exposure to UV light. The mechanism of coloration and bleaching process has been discussed.  相似文献   

3.
We report phosphatization is a promising method to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. The resulting phosphated mesoporous TiO2 possessed higher reversible capacity and better cycling stability than the pure mesoporous TiO2. When cycled at 30 mA/g between 3.0 and 1.0 V, the initial capacity of phosphate mesoporous TiO2 was 249 mA h/g, significantly higher than that of pure mesoporous TiO2 (204 mA h/g). After 40 cycles, the capacity retention ratio of phosphate mesoporous TiO2 reached 83.7%, while pure mesoporous TiO2 had merely a capacity retention ratio of 62.3%. We believe that this phosphatization process could be used to enhance the electrochemical performance of other metal oxides for lithium ion batteries.  相似文献   

4.
After it has been successfully synthesized in 2008, so far, no Raman investigations on the micro-sized anatase TiO2 single crystal which has a large percentage of the reactive (0 0 1) facets have been conducted to the best of our knowledge. In the present work, this unique anatase TiO2 single crystal was investigated by noninvasive and nondestructive Raman mapping technique. Raman images of both non-polarized and polarized measurements showed that the Raman features of the crystal varied with measurement position. The differences among the Raman spectra measured on different crystal facets were believed to result from the orientations and the symmetry rules. Whereas the differences among those measured at different points of the same crystal facet under the same measurement condition were supposed to indicate the defects of the crystal structure, such as oxygen vacancies, local lattice disorder etc. Furthermore, the appearance of the two second order Raman peaks of 803 and 918 cm−1 as well as the blue-shift of 395 cm−1 peak implies the anharmonicity of the crystal structure, which is also probably caused by the crystal defects. Our results provide useful information about the structure of this unique anatase TiO2 material, and could be complementary to those that acquired by other characterization techniques.  相似文献   

5.
Ordered mesoporous TiO2 materials with an anatase frameworks have been synthesized by using a cationic surfactant cetyltrimethylammonium bromide (C16TMABr) as a structure-directing agent and soluble peroxytitanates as Ti precursor through a self-assembly between the positive charged surfactant S+ and the negatively charged inorganic framework I? (S+I? type). The low-angle X-ray diffraction (XRD) pattern of the as-prepared mesoporous TiO2 materials indicates a hexagonal mesostructure. XRD and transmission electron microscopy results and nitrogen adsorption–desorption isotherms measurements indicate that the calcined mesoporous TiO2 possesses an anatase crystalline framework having a maximum pore size of 6.9 nm and a maximum Brunauer–Emmett–Teller specific surface area of 284 m2 g?1. This ordered mesoporous anatase TiO2 also demonstrates a high photocatalytic activity for degradation of methylene blue under ultraviolet irradiation.  相似文献   

6.
Chemical vapor deposition (CVD) was firstly used to simultaneously codope fluorine and boron into TiO2 nanotubes anodized Ti in C2H2O4 · 2H2O + NH4F electrolyte. F–B-codoping was successfully carried out by annealing the anodized TiO2 nanotubes through CVD, as evidenced from XPS analysis. SEM images showed that the higher the annealing temperature, the greater structure damage of F–B-codoped sample. XRD results confirmed that annealing temperature had an influence on the phase structure and boron and fluorine impurities could retard anatase–rutile phase transition. F–B-codoped samples displayed remarkably strong absorption in both UV and visible range. Under visible-light irradiation, F–B-codoped samples showed the higher Iph and catalytic activity in methyl orange photoelectrodegradation than F-doped sample and B-doped sample. This showed a convincing evidence of F–B-codoping of TiO2 had an obvious synergistic effect on the enhancement of photocurrents and photoelectrocatalytic activity.  相似文献   

7.
Rutile type TiO2 nanoparticles (10 nm × 200 nm in size) were prepared using a precipitation method in aqueous solution. Their lithium reactivities were followed using both classical galvanostatic insertion and in situ XRD measurements, and compared to that of a bulk and commercial nano-sized (50 nm) rutile TiO2 sample so as to stress the interlink between Li insertion electrochemical capacity and crystallite size. For the highly divided material, we obtained a reversible capacity of 0.5 Li ion per formula unit after a first reduction step during which, the material is irreversibly transformed. Such a reduction step is shown to enlist two solid solution domains followed by the formation of a rocksalt type phase LiTiO2. Such a specific reactivity of nano-sized rutile TiO2 is explained in terms of better lattice strains accommodation during the insertion of lithium.  相似文献   

8.
To enhance the high-rate capability (up to 120 C, 20 A/g) of nanoparticulate TiO2 (anatase) formed by thermal treatment of protonated TiO2 nanotubes, we used two types of additives: RuO2 as an electron-conductive material [Y.-G. Guo, Y.-S. Hu, W. Sigle, J. Maier, Adv. Mater. 19 (2007) 2087] and silica as a suppressant of particle growth during heat treatment. We show systematically that both additives, when used separately, improve the high-rate performance of anatase by 25–55 mA h/g at 60 C. The combined use of both additives in a total amount of merely 2.5 wt.% leads to an improvement of more than 70 mA h/g at 60 C. The underlying mechanisms for these significant effects are briefly discussed.  相似文献   

9.
A simple one-step heat-treatment of peroxotitanate complex aqueous solution at around 100 °C was resulted in the formation of ellipsoidal anatase TiO2 nanoparticles having a high aspect ratio with no branches. The length of these ellipsoidal TiO2 falls in the range of 200–350 nm, depending on mole ratio of Ti4+/H2O2. Dye-sensitized solar cell based on these ellipsoidal nanocrystalline TiO2 as photoanode was fabricated and characterized.  相似文献   

10.
Nano-TiO2 was synthesized by sol–gel method. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) images, transmission electron microscope (TEM), BET surface area measurement and DRS analysis. The formation of anatase phase nano-TiO2 was confirmed by XRD measurements and its crystalline size is found to be 15.2 nm. SEM images depict the crystalline nature of prepared TiO2. The BET surface area of prepared TiO2 is found to be 86.5 m2 g?1 which is higher than that of commercially available TiO2–P25. The photocatalytic activity of prepared anatase phase TiO2 has been tested for the degradation of two azo dyes: Reactive Red 120 (RR 120) and Trypan Blue (TB) using solar light. The photocatalytic activity of nano-TiO2 is higher than TiO2–P25 under solar light. The mineralization of dyes has been confirmed by chemical oxygen demand (COD) measurements.  相似文献   

11.
Recently titania synthesis was reported using various structuration procedures, leading to the production of solid presenting high surface area but exhibiting moderate thermal stability. The study presents the synthesis of TiO2/SiO2 nanocomposites, a solid that can advantageously replace bulk titania samples as catalyst support. The silica host support used for the synthesis of the nanocomposite is a SBA-15 type silica, having a well-defined 2D hexagonal pore structure and a large pore size. The control of the impregnation media is important to obtain dispersed titania crystals into the porosity, the best results have been obtained using an impregnation in an excess of solvent. After calcination at low temperature (400 °C), nanocomposites having titania nanodomains (~2–3 nm) located inside the pores and no external aggregates visible are obtained. This nanocomposite exhibits high specific surface area (close to that of the silica host support, even with a titania loading of 55 wt.%) and a narrow pore size distribution. Surprisingly, the increase in calcination temperature up to 800 °C does not allow to detect the anatase to rutile transition. Even at 800 °C, the hexagonal mesoporous structure of the silica support is maintained, and the anatase crystal domain size is evaluated at ~10 nm, a size close to that of the silica host support porosity (8.4 nm). Comparison of their physical properties with the results presented in literature for bulk samples evidenced that these TiO2/SiO2 solids are promising in term of thermal stability.  相似文献   

12.
We report the electrochemical performance of carbon-coated TiO2 nanobarbed fibers (TiO2@C NBFs) as anode material for lithium-ion batteries. The TiO2@C NBFs are composed of TiO2 nanorods grown on TiO2 nanofibers as a core, coated with a carbon shell. These nanostructures form a conductive network showing high capacity and C-rate performance due to fast lithium-ion diffusion and effective electron transfer. The TiO2@C NBFs show a specific reversible capacity of approximately 170 mAh g 1 after 200 cycles at a 0.5 A g 1 current density, and exhibit a discharge rate capability of 4 A g 1 while retaining a capacity of about 70 mAh g 1. The uniformly coated amorphous carbon layer plays an important role to improve the electrical conductivity during the lithiation–delithiation process.  相似文献   

13.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

14.
It is demonstrated that nanostructured titanium (IV) oxide (TiO2) films can be deposited on glass substrates at 95 °C using hydrothermal growth, their properties being greatly affected by the substrate materials. Anatase TiO2 films grown on ITO for deposition period of 50 h were observed to exhibit a very efficient, reversible light-induced transition to super-hydrophilicity, reaching a nearly zero contact angle. Enhanced photocatalytic activity (65%) was found for the rutile TiO2 samples grown on microscope glass, possibly due to their higher roughness with respect to anatase grown on ITO. The effect of the substrate material used is discussed in terms of the TiO2 phase and morphology control, for the best photoinduced hydrophilic and photocatalytic performance of the samples.  相似文献   

15.
Tremella-like structured MoO2 consisting of nanosheets was obtained via a Fe2O3-assisted hydrothermal reduction of MoO3 in ethylenediamine aqueous solution. The as-prepared product was characterized and tested with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and capacity measurement as anode material for lithium ion batteries. This structured MoO2 shows very high reversible capacity (>600 mA h g−1), good rate capability and cycling performance, presenting potential application as anode material for lithium ion batteries with high rate capability and high capacity.  相似文献   

16.
This work aims to maximize the number of active sites for energy storage per geometric area, by approaching the investigation to 3D design for microelectrode arrays. Self-organized Li4Ti5O12/TiO2/Li3PO4 composite nanoforest layer (LTL) is obtained from a layer of self organized TiO2/Li3PO4 nanotubes. The electrochemical response of this thin film electrode prepared at 700 °C exhibited lithium insertion and de-insertion at 1.55 and 1.57 V respectively, which is the typical potential found for lithium titanates. The effects of lithium phosphate on lithium titanate are explored for the first time. By cycling between 2.7 and 0.75 V the LTL/LiFePO4 full cell delivered 145 mA h g 1 at an average potential of 1.85 V leading to an energy density of 260 W h kg 1 at C/2. Raman spectroscopy revealed that the γ-Li3PO4/lithium titanate structure is preserved after prolonged cycling. This means that Li3PO4 plays an important role for enhancing the electronic conductivity and lithium ion diffusion.  相似文献   

17.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

18.
Hexagonal Li2MgSnO4 compound was synthesized at 800 °C using Urea Assisted Combustion (UAC) method and the same has been exploited as an anode material for lithium battery applications. Structural investigations through X-ray diffraction, Fourier Transform Infra Red spectroscopy and 7Li NMR (Nuclear Magnetic Resonance spectroscopy) studies demonstrated the existence of hexagonal crystallite structure with a = 6.10 and c = 9.75. An average crystallite size of ∼400 nm has been calculated from PXRD pattern, which was further evidenced by SEM images. An initial discharge capacity of ∼794 mA h/g has been delivered by Li2MgSnO4 anode with an excellent capacity retention (85%) and an enhanced coulombic efficiency (97–99%). Further, the Li2MgSnO4 anode material has exhibited a steady state reversible capacity of ∼590 mA h/g even after 30 cycles, thus qualifying the same for use in futuristic lithium battery applications.  相似文献   

19.
TiO2 is a material of great interest for many technological applications among which, as catalyst support. As this specific application requires a good thermal stability of the material, the phase transition between the two most commonly used titania polymorphs, anatase and rutile, has been extensively studied over the past decade. However not much importance has been given to the initial and final particles morphologies. In this study, anatase nanoparticles with an elongated shape were synthesized and their kinetic phase transformation was studied. The thermal treatments were conducted at temperatures ranging from 500 to 700 °C. The morphology evolution and the phase transition were characterized by X-ray diffraction and transmission electron microscopy. The phase transformation kinetics is best described by the interface nucleation models. The values of the measured kinetic parameters are significantly lower than those proposed in the literature for isotropic particles, with an activation energy of Ea = 345 kJ mol?1. The influence of morphology and, as a consequence, the influence of exposed faces on anatase particles, are presented and discussed.  相似文献   

20.
In this paper, flower-like spinel Li4Ti5O12 consisting of nanosheets was synthesized by a hydrothermal process in glycol solution and following calcination. The as-prepared product was characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction and cyclic voltammetry. The capacity of the sample used as anode material for lithium ion battery was measured. This structured Li4Ti5O12 exhibited a high reversible capacity and an excellent rate capability of 165.8 m Ahg−1 at 8 C, indicating potential application for lithium ion batteries with high rate performance and high capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号