首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bingham(宾汉)模型情况下,多采用通用公式进行圆管层流压降的解析计算,即将Bingham模型本构方程代入粘性流体圆管层流流动通用公式进行计算,仅能得到压降的解析解.新方法结合Bingham流体本构方程与运动方程,建立有关力学平衡方程,并运用代数方程的根式解理论对圆管层流流动时的非线性方程进行求解,可直接求得Bingham流体圆管层流压降及速度流核区半径的解析解,进一步可求得圆管层流速度解析解;Bingham流体圆管层流速度的直接影响因素为流量、塑性粘度和屈服值,研究发现速度流核宽度与屈服值成正比,与流量及塑性粘度成反比,且流核的宽度越大,流核区的速度越小.  相似文献   

2.
3.
The pulsatile flow of blood through catheterized artery has been studied in this paper by modeling blood as Herschel–Bulkley fluid and the catheter and artery as rigid coaxial circular cylinders. The Herschel–Bulkley fluid has two parameters, the yield stress θ and the power index n. Perturbation method is used to solve the resulting quasi-steady nonlinear coupled implicit system of differential equations. The effects of catheterization and non-Newtonian nature of blood on yield plane locations, velocity, flow rate, wall shear stress and longitudinal impedance of the artery are discussed. The existence of two yield plane locations is investigated and their dependence on yield stress θ, amplitude A, and time t are analyzed. The width of the plug core region increases with increasing value of yield stress at any time. The velocity and flow rate decrease, whereas wall shear stress and longitudinal impedance increase for increasing value of yield stress with other parameters held fixed. On the other hand, the velocity, flow rate and wall shear stress decrease but resistance to flow increases as the catheter radius ratio (ratio of catheter radius to vessel radius) increases with other parameters fixed. The results for power law fluid, Newtonian fluid and Bingham fluid are obtained as special cases from this model.  相似文献   

4.
This paper investigates the stability of a thin incompressible viscoelastic fluid designated as Walters’ liquid B″ during spin coating. The long-wave perturbation method is proposed to derive a generalized kinematic model of the film flow. The method of normal mode is applied to study the linear stability. The amplitude growth rates and the threshold conditions are characterized subsequently and summarized as the by-products of the linear solutions. Using the multiple scales method, the weakly nonlinear stability analysis is studied for the evolution equation of a film flow. The Ginzburg–Landau equation is determined to discuss the threshold conditions of the various critical flow states. The study reveals that the rotation number and the radius of the rotating circular disk generate the destabilizing effects. Moreover, the viscoelastic parameter k indeed plays a more significant role in destabilizing the film flow than a thin Newtonian fluid during spin coating [27].  相似文献   

5.
建立的Bingham流体稠密两相流动的二阶矩-颗粒动力论湍流模型(USM-theta模型)既体现了两相的作用,又体现了屈服应力所引起的附加项,并提出了USM-theta模型下考虑浓度修正值影响的两相湍流流动的算法.利用该模型对圆管内Bingham流体的单相湍流流动、稠密液固两相的湍流流动进行了计算,并和五方程湍流模型进行了比较,结果表明该模型的预测效果更好.利用USM-theta模型对含颗粒的Bingham流体的两相湍流流动进行了模拟,随着屈服应力的增加,Bingham流体相与颗粒相在管道中心附近的主流速度减小.液固两相湍流和Bingham流体两相湍流的计算结果表明屈服应力引起的附加项对流动有很重要的影响.  相似文献   

6.
The long-wave perturbation method is employed to investigate the hydromagnetic stability of a thin electrically-conductive power-law liquid film flowing down the external surface of a vertical cylinder in a magnetic field. The validity of the numerical results is improved through the introduction of the flow index and the magnetic force into the governing equation. In contrast to most previous studies presented in the literature, the solution scheme employed in this study is based on a numerical approximation approach rather than an analytical method. The normal mode approach is used to analyze the stability of the film flow. The modeling results reveal that the stability of the film flow system is weakened as the radius of the cylinder is reduced. However, the flow stability can be enhanced by increasing the intensity of the magnetic field and the flow index, respectively. In general, the optimum conditions can be found through the use of a system to alter stability of the film flow by controlling the applied magnetic field.  相似文献   

7.
泥浆的力学性质和砂粒在泥浆中运动时所受的阻力   总被引:3,自引:0,他引:3  
一般认为泥浆在运动时候,它的力学性质已经有别于通常的牛顿流体而是宾汉体了.因此剪应力应该用宾汉体的剪应力关系式.本文作者则持另外一种见解.认为泥浆是一种接近于沥青一类的粘性极大,弛豫时间极长的流体.本文讨论了泥浆的力学性质,并且进一步讨论了圆球在泥浆中作匀速直线运动时所受到的阻力.在讨论过程中,我们利用了人们熟知的粘性流体绕圆球运动的Stokes解,得到了一个简单的阻力公式.当圆球在重力和浮力作用下在泥浆中作沉淀运动时候,我们求出了沉降速度.在沉降速度为零时候,我们就可以求出"不沉粒径"和"宾汉体极限剪应力"的关系.我们把计算结果得到的理论公式和陕西水科所及黄委会水科所等单位的实验数据[1][2]进行了比较,结果是令人满意的.  相似文献   

8.
本文对两种情况导出了描述粘塑性流体在旋转圆盘上流动的基本方程.分别用摄动方法和数值方法得到了方程的解.这就有可能去计算薄膜的厚度分布.经计算发现有两种类型的厚度分布.对于粘度和屈服应力都与径向坐标r无关的粘塑性流体,厚度h随r的增加而减小.对于粘度和屈服应力都是时间和r的函数的Bingham流体,厚度hr的增加而增加.  相似文献   

9.
A thin viscous liquid film flow is developed over a stretching sheet under different nonlinear stretching velocities. An evolution equation for the film thickness, is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. A comparison is made with the analytic solution obtained in [B. S. Dandapat, A. Kitamura, B. Santra, “Transient film profile of thin liquid film flow on a stretching surface”, ZAMP, 57, 623-635 (2006)]. It is observed that all types of stretching produce film thinning but non-monotonic stretching produces faster thinning at small distance from the origin. The velocity u along the stretching direction strongly depends on the distance along the stretching direction and the Froude number.  相似文献   

10.
This paper presents a symbolic method for a delayed state feedback controller (DSFC) design for linear time-periodic delay (LTPD) systems that are open loop unstable and its extension to incorporate regulation and tracking of nonlinear time-periodic delay (NTPD) systems exhibiting chaos. By using shifted Chebyshev polynomials, the closed loop monodromy matrix of the LTPD system (or the linearized error dynamics of the NTPD system) is obtained symbolically in terms of controller parameters. The symbolic closed loop monodromy matrix, which is a finite dimensional approximation of an infinite dimensional operator, is used in conjunction with the Routh–Hurwitz criterion to design a DSFC to asymptotically stabilize the unstable dynamic system. Two controllers designs are presented. The first design is a constant gain DSFC and the second one is a periodic gain DSFC. The periodic gain DSFC has a larger region of stability in the parameter space than the constant gain DSFC. The asymptotic stability of the LTPD system obtained by the proposed method is illustrated by asymptotically stabilizing an open loop unstable delayed Mathieu equation. Control of a chaotic nonlinear system to any desired periodic orbit is achieved by rendering asymptotic stability to the error dynamics system. To accommodate large initial conditions, an open loop controller is also designed. This open loop controller is used first to control the error trajectories close to zero states and then the DSFC is switched on to achieve asymptotic stability of error states and consequently tracking of the original system states. The methodology is illustrated by two examples.  相似文献   

11.
A thin viscous liquid film flow is developed over a stretching sheet under different nonlinear stretching velocities. An evolution equation for the film thickness, is derived using long-wave approximation of thin liquid film and is solved numerically by using the Newton–Kantorovich method. A comparison is made with the analytic solution obtained in [B. S. Dandapat, A. Kitamura, B. Santra, “Transient film profile of thin liquid film flow on a stretching surface”, ZAMP, 57, 623-635 (2006)]. It is observed that all types of stretching produce film thinning but non-monotonic stretching produces faster thinning at small distance from the origin. The velocity u along the stretching direction strongly depends on the distance along the stretching direction and the Froude number.  相似文献   

12.
The paper presents both the linear and nonlinear stability theories for the characterization of thin Newtonian film flows traveling down along a vertical moving plate. The linear model is first developed to characterize the flow behavior. After showing the inadequacy of the linear model in representing certain flow characteristics, the nonlinear kinematics model is then developed to represent the system. The long-wave perturbation method is employed to derive the generalized kinematic equations with free film surface condition. The linear model is solved by using the normal mode method for three different, namely, the quiescent, up-moving and down-moving, moving conditions. Subsequently, the elaborated nonlinear film flow model is solved by the method of multiple scales. The modeling results clearly indicate that both subcritical instability and supercritical stability conditions are possible to occur in the film flow system. The effect of the down-moving motion of the vertical plate tends to enhance the stability of the film flow.  相似文献   

13.
The problem of hydrodynamic instability of a thin condensate viscoelastic liquid film flowing down on the outer surface of an axially moving vertical cylinder is investigated. In order to improve the accuracy of numerical results, the viscoelastic and heat transfer parameters have been included into the governing equations. Also, the analytical solutions are obtained by utilizing the long-wave perturbation method. The influence of some physical parameters is discussed in both linear and nonlinear steps of the problem. It has been revealed that the stability of the film flow is weakened when the radius of cylinder and the temperature difference are reduced. Moreover, it is found that the increment of down-moving motion of the cylinder can enhance the flow stability. Further, the thin film flow can be destabilized by the viscoelastic property. The results show that both supercritical stability and subcritical instability can take place within the film flow system given appropriate conditions. Moreover, the absence of Reynolds number leads to an obvious difference in the behavior of some physical parameters.  相似文献   

14.
The Bingham fluid model represents viscoplastic materials that display yielding, that is, behave as a solid body at low stresses, but flow as a Newtonian fluid at high stresses. In any Bingham flow, there may be regions of solid material separated from regions of Newtonian flow by so-called yield boundaries. Such materials arise in a range of industrial applications. Here, we consider the helical flow of a Bingham fluid between infinitely long coaxial cylinders, where the flow arises from the imposition of a steady rotation of the inner cylinder (annular Coutte flow) on a steady axial pressure driven flow (Poiseuille flow), where the ratio of the rotational flow compared to the axial flow is small. We apply a perturbation procedure to obtain approximate analytic expressions for the fluid velocity field and such related quantities as the stress and viscosity profiles in the flow. In particular, we examine the location of yield boundaries in the flow and how these vary with the rotation speed of the inner cylinder and other flow parameters. These analytic results are shown to agree very well with the results of numerical computations.  相似文献   

15.
Linear and non-linear stability analysis for characterization of micropolar film flowing down the inner surface of a rotating infinite vertical cylinder is given. A generalized non-linear kinematic model is derived to represent the physical system and is solved by the long wave perturbation method in the following procedure. First, the normal mode method is used to characterize the linear behaviors. Then, an elaborated non-linear film flow model is solved by using the method of multiple scales to characterize flow behaviors at various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion. The modeling results indicate that by increasing the rotation speed, Ω, and the radius of cylinder, R, the film flow will generally stabilize the flow system.  相似文献   

16.
The axisymmetric flow of a thin liquid film is considered for the problem of a vertically rotating disk that is partially immersed in a liquid bath. A model for the fully three-dimensional free boundary problem of the rotating disk, that drags a thin film out of the bath is set up. From this, a dimension-reduced extended lubrication approximation that includes the meniscus region is derived. This problem constitutes a generalization of the classic drag-out and drag-in problem to the case of axisymmetric flow. The resulting nonlinear fourth-order partial differential equation for the film profile is solved numerically using a finite element scheme. For a range of parameters steady states are found and compared to asymptotic solutions. Patterns of the film profile, as a function of immersion depth and angular velocity are discussed.  相似文献   

17.
A solution of the problem of the plane parallel flow of viscoplastic medium between two parallel plates when they approach (separate) at a specified velocity is given within the framework of the Bingham model in the inertialess thin-layer approximation for arbitrary values of the coefficient of viscosity and the yield stress. Analytic expressions are obtained for the velocity and pressure fields. The boundary of the flow kernel, where the shear stress on the areas of the parallel planes of the plates is less than the yield stress and the component of the velocity, parallel to the plates, does not change in a transverse direction, is determined. A single similarity parameter which defines the kinematic and dynamic flow characteristics is found. For a specified law of motion of the plates, a general expression is obtained for the force acting on plates of finite size in terms of a dimensionless function of a single dimensionless parameter. The law of approach (separation) of the plates under a constant force is found.  相似文献   

18.
Linearized equations of motion are used to analyze the stability of flow of a liquid film on the walls of a plane-parallel horizontal channel which melt in a stream of hot viscous gas. For materials with a high specific heat of fusion, this flow is shown to be unstable relative to small-amplitude long-wave perturbations.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 60, pp. 74–78, 1986.  相似文献   

19.
本文讨论了在二维扰动情况下,宾汉流体沿外面流动的稳定性问题。在长波解情况下,得到了临界雷诺数的近似表示,并分析了屈服应力对流动稳定性的影响。  相似文献   

20.
宾汉流体与塞流的衔接问题   总被引:3,自引:0,他引:3  
宾汉体在流动时候,离边壁远的地方经常会产生塞流现象。由于塞流没有明确的本构关系式,所以在有些问题中,得到的解可能会存在不确定性。本文讨论了环孔流动和管流,利用剪应力的解析性质,得到了唯一的解,并且和石油工程中泥浆流动时压力降的常用公式进行比较,表达式的形状是完全一样的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号