首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A label‐free electrochemical method based on scanning electrochemical microscopy (SECM) has been developed to image latent fingerprints with high resolution on five kinds of metal surfaces (platinum, gold, silver, copper and stainless steel), as it could measure the minor conductivity differences of the substrate surface and avoid the interference of the background‐color. The images of sebaceous fingerprints on clean metals were revealed by SECM with ferrocene methanol acting as a redox mediator to detect the topology of the fingerprint deposits in constant‐height feedback mode. Inhibition of electrochemical processes on areas of the surface masked by the insulating fingerprint residues generated a negative image of the fingerprint.  相似文献   

2.
A new application of scanning electrochemical microscopy (SECM) to probe the transport of protons through membranes is described. Herein, a probe ultramicroelectrode (UME) is modified with a self‐assembled monolayer (SAM) of 11‐mercaptoundecanoic acid to qualitatively image areas within different pH regions above a track‐etched membrane. The current response of the modified electrode in the presence of potassium hexacyanoferrate as electroactive component is different in acidic and alkaline solutions. Depending on the pH value of the solution, the SAM‐covered electrode exposes either a neutral or a negatively charged insulating monolayer at pH 3 or 7, respectively, which leads to an increase/decrease in the faradaic current due to electrostatic interactions between the neutral/charged surface and the charged redox mediator. Therefore, local pH changes in the close vicinity of a membrane‐like substrate lead to different current responses recorded at the tip electrode when scanning above the surface.  相似文献   

3.
Multifunctional coatings were produced by the layer by layer assembly of single-walled carbon nanotubes (SWNT) dispersed in DNA and lysozyme (LSZ) on an insulating glass substrate. The electrochemical properties of these mechanically robust biocoatings were characterized for the first time using scanning electrochemical microscopy (SECM) and impedance spectroscopy (IS). SECM surface analysis demonstrated an increase in tip current with a corresponding increase in the number of oppositely polarized interlaced layers, indicating that subsequent layers were not electrically insulated from each other and a direct correlation exists between SECM feedback response and the number of layers. The rate of charge transport was also dependent on the chemical composition/polarity of the outermost surface layer. Coatings terminating in SWNT-DNA resulted in more positive feedback than those terminating in SWNT-LSZ. IS analysis demonstrated that the SWNT-DNA had a low charge transfer resistance in comparison with SWNT-LSZ, which is consistent with the results obtained by SECM. These results enable enhanced fundamental understanding and prediction of the electrical properties of SWNT-biopolymer layers with controlled interlaced polarities and orientation. Furthermore, these finding highlight the potential for SWNT-biopolymers in electronic and sensing applications.  相似文献   

4.
An optimized immobilization procedure based on the electroreduction of aryldiazonium salt followed by covalent attachment of a cross-linked hydrogel was used to graft glucose oxidase on a carbon surface. Scanning electrochemical microscopy (SECM) and cyclic voltammetry were used to follow the construction steps of the modified electrode. By adjusting the compactness of the layer through the electrografting reaction, the penetration of the mediator through the layer can be controlled to allow the monitoring of the enzymatic activity by both cyclic voltammetry and SECM in feedback mode. The enzymatic activity of the film is finally characterized by SECM.  相似文献   

5.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

6.
This work is devoted to the study of the electrochemical grafting of nitrophenyl groups onto platinum ultramicroelectrode (UME). The grafting was made using the electrochemical reduction of nitrophenyldiazonium. Our results demonstrate the possibility to reduce the diazonium onto Pt UME. As consequence the electrochemical reduction leads to the attachment of nitrophenyl groups onto the UME surface. Following that, the modified UME was characterized using electrochemical techniques. In addition, the electrochemical response of the modified UME in the presence of reversible redox couple, ferrocene, has been studied. The main remark is that the steady state current observed at the UME is not affected by the presence of the nitrophenyl layers. Finally, from this last point we demonstrate the possibility to achieve scanning electrochemical microscopy (SECM) using modified platinum UME.  相似文献   

7.
We report the first directed adsorption of Photosystem I (PSI) on patterned surfaces containing discrete regions of methyl- and hydroxyl-terminated self-assembled monolayers (SAMs) on gold. SAM and PSI patterns are characterized by scanning electrochemical microscopy (SECM). The insulating protein complex layer blocks the electron transfer of the SECM mediator, thereby reducing the electrochemical current significantly. Uniformly and densely packed adsorbed protein layers are observed with SECM. Pattern images correlate with our previous studies where we showed that low-energy surfaces (e.g., CH3-terminated) inhibit PSI adsorption in the presence of Triton X-100, whereas high-energy surfaces (e.g., OH-terminated) enable adsorption. Therefore, a SAM pattern with alternating methyl and hydroxyl surface regions allows PSI adsorption only on the hydroxyl surface, and this is demonstrated in the resulting SECM images.  相似文献   

8.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

9.
In this paper, the electrochemical current rectification phenomenon exhibited at an electrochemical interface constituted by a glassy carbon electrode covered with a bilayer of polymer films is discussed. The authors have shown that Methylene Blue (MB) redox species can be confined to a very thin insulating polymer film formed from orthophenylene diamine. The poly(opd) film exhibited excellent blocking properties to redox molecules in solution. On the other hand, the insulating poly(opd) film trapped with MB could mediate electron transfer between the redox molecules in solution and the electrode. Further, a second polymeric layer (Nafion film) trapped with ferrocene redox species was formed as the outer layer over the inner poly (opd) film containing MB. This bilayer-modified electrode, due to the significant difference in the redox potentials of the MB and ferrocene species immobilized in the inner and outer layers, respectively, exhibits unidirectional current flow and the results of the voltammetric investigations on the modified electrodes are described in this communication.  相似文献   

10.
《Electroanalysis》2003,15(13):1109-1114
The electrochemical characterization of a hydrogen peroxide sensor based on a ferrocene‐containing polymer electrochemically deposited onto a platinum electrode is described. The redox polymer consists of a siloxane‐based homopolymer, with pendant electronically communicated ferrocenyl moieties. The electrodes were used as the transducer for glucose and lactate‐sensing enzyme sensors. Amperometric biosensors were prepared by immobilization of glucose oxidase (Gox) or lactate oxidase (Lox) onto these modified electrodes. The steady‐state amperometric response of the sensors is investigated as a function of the applied potential and substrate concentration. Interferences, sensitivity and stability of the sensors were also studied.  相似文献   

11.
Application of rare earth conversion coatings as a surface treatment for magnesium has been the subject of several studies revealing the potential to act as an effective passivating layer. Herein a mechanistic study is presented on the formation of a rare earth conversion layer based on Pr(NO3)3 on AZ80X magnesium alloy in simulated biological (buffered) solution. Scanning electrochemical microscopy (SECM) was used to investigate the insulating properties and degradation behaviour of the Pr conversion layer. The self-healing properties of the conversion layer in the presence of Pr3 + were also studied using SECM. Results revealed the self-healing characteristic of the Pr conversion film in the presence of active, Pr3 +, species. The Pr conversion layer provided passivation in the short term by producing an electrochemically inert and insulating layer. SECM results in potentiometric mode elucidated the role of near surface pH in the formation of the conversion coating.  相似文献   

12.
A reagentless strategy for template‐free patterning of uniformly inert surfaces is suggested. A layer of p‐hydroquinone (HQ) protected by the tert‐butyldimethylsilyl (TBDMS) group is electrografted onto glassy carbon electrodes. Chemoselective activation is performed through electrochemically controlled cleavage of the TBDMS group, which yields the redox‐active surface‐confined quinone moieties. The latter are shown to undergo electrochemically induced Michael addition, which serves for subsequent functionalization of the electrode surface. Patterning of the TBDMS–quinone‐modified surface is accomplished by using selective localized cleavage of the protecting group. State‐of‐the‐art direct‐mode scanning electrochemical microscopy (SECM) patterning fails to yield the anticipated interfacial reaction; however, the electrochemical scanning droplet cell (SDC) is capable of conducting the localized chemoselective reaction. In a small area, dictated by the dimensions of the droplet, electrochemically induced cleavage of the protecting group can be performed locally to give rise to arrays of active quinone spots. Upon deprotection, the redox signals, attributed to the hydroquinone/benzoquinone couple, provide the first direct evidence for chemoselective electrochemical patterning of sensitive functionalities. Subsequent SECM studies of the resulting modified areas demonstrate spatial control of the proposed patterning technique.  相似文献   

13.
The fabrication of a gold microelectrode modified with iridium oxide film (IrOx) and its use as tip with a dual function in SECM experiments is reported. The defective structure of the coating onto the microelectrode surface was used as strategy to combine the advantages of both amperometric (for current‐distance determination) and potentiometric (for pH sensing) SECM operation modes. Approach curves, using oxygen and hexaammineruthenium(III) as redox mediators, were obtained without significant loss of the performance and reproducibility of the potentiometric pH response. This allowed the precise positioning of the proposed tip above a substrate in SECM experiments and, subsequently, to monitor pH at the substrate surface. The IrOx modified microelectrode was applied successfully in SECM experiments involving the local proton consumption during the nitrate reduction at a copper cathode surface.  相似文献   

14.
We have studied the micropatterning and characterization of the organic monolayers using cyclic voltammetry (CV), scanning electrochemical microscopy (SECM), atom force microscopy, and AC impedance, and have determined the electrochemical parameters, i.e., the apparent reaction rate constant (K f) and the coverage of the electrode surface (θ). CV and SECM experiments demonstrated that the surface of the modified electrode represents an insulating substrate for ferricyanide. Using the high sensitivity of the electron transfer of ferricyanide to the modification of the gold surface with DNA, we selected this reaction as a probe to study the different modification stages at this modified electrode. SECM images obtained from bare, partially modified, and totally modified electrodes showed very good resolution with different topographies or null according to the extent of modification. Based on a comparison with the results of the experiments, a reasonable agreement can be obtained, which means a conjunction of these techniques.  相似文献   

15.
A remarkable change in the conductivity of a polyaniline (PAN) Langmuir monolayer in the conducting state, as a function of surface pressure, has been observed using scanning electrochemical microscopy (SECM). The film conductivity, as expressed by the SECM current response of a redox mediator, was measured in-situ in a Langmuir film balance. The conductivity of the film increases significantly with surface pressure, above a threshold value of ca. 20 mN m-1.  相似文献   

16.
A carbon ceramic electrode (CCE) modified with the redox probe—decamethylferrocene solution in hydrophobic organic solvent—2-nitrophenyloctyl ether and immersed into an aqueous solution was studied by scanning electrochemical microscopy (SECM). After the electrochemical oxidation of decamethylferrocene, its cations were detected near the electrode surface in the aqueous phase. This indicates that some fraction of the redox-active cations electrochemically produced in the organic phase is transferred across the liquid/liquid interface. They are reduced at the SECM tip and form a solid deposit. The amount of deposited decamethylferrocene was estimated by the anodic reaction at the tip. It is affected by the substrate–tip distance, deposition time, and electrolyte concentration. The SECM images of unmodified and modified CCEs are consistent with their heterogeneous structure.  相似文献   

17.
Two-dimensional micropatterns of microparticles were fabricated on glass substrates with negative dielectrophoretic force, and the patterned microparticles were covalently bound on the substrate via cross-linking agents. The line and grid patterns of microparticles were prepared using the repulsive force of negative dielectrophoresis (n-DEP). The template interdigitated microband array (IDA) electrodes (width and gap 50 mum) were incorporated into the dielectrophoretic patterning cell with a fluidic channel. The microstructures on the glass substrates with amino or sulfhydryl groups were immobilized with the cross-linking agents disuccinimidyl suberate (DSS) and m-maleimidobenzoyl-N-hydroxy-succinimide ester (MBS). Diaphorase (Dp), a flavoenzyme, was selectively attached on the patterned microparticles using the maleimide groups of MBS. The enzyme activity on the patterned particles was electrochemically characterized with a scanning electrochemical microscope (SECM) in the presence of NADH and ferrocenylmethanol as a redox mediator. The SECM images proved that Dp was selectively immobilized onto the surface of microparticles to maintain its catalytic activity.  相似文献   

18.
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 mol L?1 NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi3+ and Pb2+ ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury‐coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5 % RSD) were obtained.  相似文献   

19.
The method of electrochemical impedance spectroscopy (EIS) was applied to investigate the behaviour of a thin intrinsically conducting polymer film (ICP) deposited on a metal substrate. Especially the conductivity, the redox properties, the anion release properties, and the corrosion protection of a coating with and without ICP film on an iron or steel substrate were studied. Combined with other electrochemical methods, the reactions taking place at an injured surface area of the coated iron were studied. The corrosion protection mechanism of polythiophene could be explained.  相似文献   

20.
AFM-SECM measurements using alternating current mode SECM (AC–SECM) were performed at an AFM tip with an integrated recessed ring microelectrode. Measurements were carried out in a three-electrode arrangement at 14.92 kHz and 110 mVpp in 1 mM KCl solution. Combined AFM–AC–SECM enables the detection of electrochemical surface properties with high lateral resolution without addition of a redox mediator, thereby providing images on topographical changes along with chemical information. For demonstrating the capabilities of this method, simultaneously recorded data on the topography and the surface conductivity of gold/glass structures and of microelectrode arrays are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号