首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system of electrolytes has been developed and studied for lithium-ion batteries. This new system is based on the interactions between Li2O or Li2O2 and tris(pentafluorophenyl) borane (TPFPB) in carbonate based organic solvents. This opens up a completely new approach in developing non-aqueous electrolytes. In general, the solubility of Li2O or Li2O2 is very low in organic solvents and the ionic conductivities of these solutions are almost undetectable. By adding certain amount of tris(pentafluorophenyl) borane (TPFPB), one type of boron based anion receptors (BBARs), the solubility of Li2O or Li2O2 in carbonate based solvents was significantly enhanced. In addition, the Li+ transference numbers of these new electrolytes measured were as high as 0.7, which are more than 100% higher than the values for the conventional electrolytes for lithium-ion batteries. The room-temperature conductivities are around 1 × 10−3 S/cm. These new electrolytes are compatible with LiMn2O4 cathode for lithium-ion batteries.  相似文献   

2.
Propylene sulfite (PS) has been studied as a film-forming electrolyte additive for use in lithium ion battery electrolytes. Even small amounts in the order of 5 vol.% PS suppress propylene carbonate (PC) co-intercalation into graphite. In addition, a 1 M LiClO4/PC/PS (95:5 by volume) electrolyte is characterised by a high oxidation stability at a LiMn2O4 cathode.  相似文献   

3.
《Solid State Sciences》2007,9(11):1069-1073
A new type of lithium difluoro(oxalate)borate salt was synthesized by solid state reaction method and has been incorporated into polyvinyledenefluoride–hexafluoropropylene (PVdF–HFP) skeleton. Ethylene carbonate (EC) and diethyl carbonate (DEC) mixture was used as plasticizing agent. Sb2O3 nanoparticle was used as the filler in the polymer host to prepare the nanocomposite polymer electrolytes (NCPE) for lithium ion batteries by solution casting technique. All the membranes were subjected to a.c. impedance, mechanical stability and morphological analysis. Among them 5 wt% Sb2O3 having NCPE exhibited enhanced conductivity of 0.298 mS cm−1 at ambient temperature and Young's modulus increased from 1.32 to 2.31 MPa after the addition of Sb2O3. The conductivity enhancement is explained in terms of Vogel–Tamman–Fulcher (VTF) theory.  相似文献   

4.
Lithium metal batteries (LMBs) comprising Li metal anode and high-voltage nickel-rich cathode could potentially realize high capacity and power density. However, suitable electrolytes to tolerate the oxidation on the cathode at high cut-off voltage are urgently needed. Herein, we present an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy for exploring oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries with pentafluorophenylboronic acid (PFPBA) as the additive. In such CEI, the armored lithium borate surrounded by CEI up-layer represses the dissolution of inner CEI moieties and also improves the Li+ conductivity of CEI while abundant LiF is distributed over whole CEI to enhance the mechanical stability and Li+ conductivity compared with polymer moieties. With such robust Li+ conductive CEI, the Li||NCM622 battery delivered excellent stability at 4.6 V cut-off voltage with 91.2 % capacity retention after 400 cycles. The excellent cycling performance was also obtained even at 4.8 V cut-off voltage.  相似文献   

5.
Cyclability of the Li|Li7La3Zr2O12 interface was tested by voltammetry under externally applied potential difference. It was found that the solid electrolyte synthesized in the study contains a minor amount of an impurity in the form of lithium carbonate. This impurity forms, when brought in contact with metallic lithium, carbon that pierces the whole volume of the ceramic separator and produces a channel for a flow of electrons through the material, which leads to a poor cyclability of the solid electrolyte. A possible way to solve the given problem is via a purposeful replacement of the carbonate in the intergrain space of Li7La3Zr2O12 with another crystalline or glassy plasticizer that possesses an acceptable unipolar lithium conductivity (no less than 10–6 S cm–1) and forms, when brought in contact with metallic lithium, no electrically conducting compound or a compound capable of reversibly intercalating/deintercalating lithium.  相似文献   

6.
《中国化学快报》2022,33(10):4635-4639
Solid-state batteries with high energy density and safety are promising next-generation battery systems. However, lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability, respectively. Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal. Zr-based lithium halides with low cost and high stability possess great potential. Herein, a small amount of In3+ is introduced in Li2ZrCl6 to synthesize Li2.25Zr0.75In0.25Cl6 electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm. Solid-state batteries using Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5 bilayer solid electrolytes combined with Li-In anode and pristine LiNi0.7Mn0.2Co0.1O2 cathode deliver high initial discharge capacities under different cut-off voltages. This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes, promoting their applications in solid-state batteries.  相似文献   

7.
A hybrid solid electrolyte interphase (SEI) formation additive, vinylene carbonate (VC)–LiNO3, was investigated in carbonic ester electrolytes. An efficiency of lithium plating/stripping as high as nearly 100% and spherical Li deposits were obtained. The electrochemical impedance spectroscopy (EIS) results demonstrate that the modified SEI is very stable and of good conductivity. X-ray photoelectron spectroscopy (XPS) results indicate that VC–LiNO3 dominates the surface chemistry of the Li anode. The formation of Li3N in the SEI contributes to the enhancement of the anode performance.  相似文献   

8.
Using the anion receptor tris(penftafluorophenyl) borane as an additive to non-aqueous electrolytes, the solubility of solid Li2O2 can be dramatically increased through the Lewis acid–base interaction between boron and peroxide. The complexed boron-peroxide ions can be electrochemically oxidized with much better kinetics than the oxidation of solid Li2O2 on a carbon powder microelectrode. This discovery could lead to a new avenue for the development of high capacity, high rate, rechargeable, Li–Air batteries.  相似文献   

9.
SnS-P2S5 and SnO-P2O5 amorphous materials were prepared by a mechanical milling technique. The SnO-P2O5 milled materials worked as a reversible electrode with higher capacity than SnO crystal in rechargeable lithium cells with conventional liquid electrolytes. All-solid-state cells with a SnX-P2X5 (X = S and O) amorphous electrode and the Li2S-P2S5 glass-ceramic electrolyte were charged and discharged at room temperature. The sulfide electrodes exhibited better charge-discharge performance than the oxide electrodes, suggesting that SnS-P2S5 electrodes are more compatible with Li2S-P2S5 sulfide solid electrolytes. All-solid state batteries 80SnS·20P2S5/LiCoO2 showed a charge-discharge plateau of about 3.4 V and high reversible capacity of over 400 mAh/g, even after 50 cycles. The SnX (X = S and O)-based amorphous materials are promising negative electrode materials with high capacity for rechargeable lithium batteries using not only liquid electrolytes but solid electrolytes.  相似文献   

10.
Thermal decomposition of lithium tris (malonato) ferrate (III) tetrahydrate i.e. Li3[Fe(CH2C2O4)3].4H2O has been studied in the temperature range of 353–873 K in static air atmosphere using Mössbauer, infrared spectroscopy and nonisothermal techniques (TG-DTG-DTA). The anhydrous complex decomposed into ferric oxide of varying particle sizes and alkali metal malonates/carbonates in succesive stages. Fimally a solid state reaction between -Fe2O3 and alkali metal carbonate gives fine particles of lithium ferrite (LiFeO2) at a temperature lower than for oxalate precursor and for ceramic method.  相似文献   

11.
The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.  相似文献   

12.
Isostructural Li2MTi6O14 (M=Sr, Ba) materials, prepared by a solid state reaction method, have been investigated as insertion electrodes for lithium battery applications. These titanate compounds have a structure that consists of a three-dimensional network of corner- and edge-shared [TiO6] octahedra, 11-coordinate polyhedra for the alkali-earth ions, and [LiO4] tetrahedra in tunnels that also contain vacant tetrahedral and octahedral sites. Electrochemical data show that these compounds are capable of reversibly intercalating four lithium atoms in a three-stage process between 1.4 and 0.5 V vs. metallic lithium. The electrodes provide a practical capacity of approximately 140 mAh/g; they are, therefore, possible alternative anode materials to the lithium titanate spinel, Li4Ti5O12. The lithium intercalation mechanism and crystal structure of Li2MTi6O14 (M=Sr, Ba) electrodes are discussed and compared with the electrochemical and structural properties of Li4Ti5O12. The area-specific impedance (ASI) of Li/Li2SrTi6O14 cells was found to be significantly lower than that of Li/Li4Ti5O12 cells.  相似文献   

13.
In the present work, we focus onthe experimental screening of selected electrolytes, which have been reported earlier in different works, as a good choice for high-voltage Li-ion batteries. Twenty-four solutions were studied by means of their high-voltage stability in lithium half-cells with idle electrode (C+PVDF) and the LiNi0.5Mn1.5O4-based composite as a positive electrode. Some of the solutions were based on the standard 1 M LiPF6 in EC:DMC:DEC = 1:1:1 with/without additives, such as fluoroethylene carbonate, lithium bis(oxalate) borate and lithium difluoro(oxalate)borate. More concentrated solutions of LiPF6 in EC:DMC:DEC = 1:1:1 were also studied. In addition, the solutions of LiBF4 and LiPF6 in various solvents, such as sulfolane, adiponitrile and tris(trimethylsilyl) phosphate, atdifferent concentrations were investigated. A complex study, including cyclic voltammetry, galvanostatic cycling, impedance spectroscopy and ex situ PXRD and EDX, was applied for the first time to such a wide range of electrolytesto provide an objective assessment of the stability of the systems under study. We observed a better anodic stability, including a slower capacity fading during the cycling and lower charge transfer resistance, for the concentrated electrolytes and sulfolane-based solutions. Among the studied electrolytes, the concentrated LiPF6 in EC:DEC:DMC = 1:1:1 performed the best, since it provided both low SEI resistance and stability of the LiNi0.5Mn1.5O4 cathode material.  相似文献   

14.
A random copolymer of ethylene oxide with CO2, namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm−1 and a Li transference number (t +) of 0.66 at 60 °C. To study ion‐conductive behavior of P(EC/EO)‐based electrolytes, the Fourier transform infrared (FT‐IR) technique is used to analyze the interactions between Li+ and functional groups of the copolymer. The carbonate groups may interact preferentially with Li+ rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High‐performance P(EC/EO) electrolyte is expected to be a candidate material for use in all‐solid‐state batteries.

  相似文献   


15.
The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3 participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.  相似文献   

16.
采用碳酸钠和碳酸氢铵作为沉淀剂和络合剂,在水溶液中共沉淀Mn2+、Ni2+和Co2+以获得混合过渡金属元素的碳酸盐沉淀前驱体Mn0.675Ni0.1625Co0.1625CO3。并进一步合成高容量锂离子电池正极材料Li[Li0.2Co0.13Ni0.13Mn0.54]O2。考察了3种不同加料方式对共沉淀前驱体的结构、形貌和元素比例的影响,以及对最终产物的结构、形貌和电化学性能的影响。  相似文献   

17.
Poly{2-methacryloyl-3-[ω-methoxyoligo(oxyethylene)]propanesulfonate lithium} (PMMOEPLi), a new kind of polymer salt intended for “inorganic salt-polymer salt” hybrid systems, was synthesized. This polymer salt has high flexibility and high polarity. Upon addition of PMMOEPLi to LiClO3 based electrolytes, ionic conductivities as high as 10−3 S/cm were obtained at ambient temperature. In the electrolyte studied Li+ dominates the conductivity, making this material a good candidate for application in lithium rechargeable batteries.  相似文献   

18.
Crystalline structure of low- and high-temperature modifications of solid lithium-conducting electrolytes Li3.75Ge0.75V0.25O4 and Li3.70Ge0.85W0.15O4 are studied by powder neutron diffraction analysis with use made of Rietveld full-profile analysis. The structure of either composition is derivative from -Li3PO4. The high conductivity of the electrolytes is connected with the presence of interstitial lithium cations, whose positions are occupied but partially. Phase transitions in the electrolytes consist of the leveling of the occupation degrees of these positions and make practically no impact on the rigid cage of the lattice.  相似文献   

19.
All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The host–guest structure Li6B18(Li3N) comprises large hexagonal pores filled with Li7N] strands that represent a perfect cutout from the structure of α-Li3N. Variable-temperature 7Li NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19 kJ mol−1 and thus much lower than pristine Li3N. The formation of the solid solution of Li6B18(Li3N) and Li6B18(Li2O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3N and Li2O.  相似文献   

20.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号