首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several models have been proposed for describing the formation of animal coat patterns. We consider reaction-diffusion models due to Murray, which rely on a Turing instability for the pattern selection. In this paper, we describe the early stages of the pattern formation process for large domain sizes. This includes the selection mechanism and the geometry of the patterns generated by the nonlinear system on one-, two-, and three-dimensional base domains. These results are obtained by an adaptation of results explaining the occurrence of spinodal decomposition in materials science as modeled by the Cahn-Hilliard equation. We use techniques of dynamical systems, viewing solutions of the reaction-diffusion model in terms of nonlinear semiflows. Our results are applicable to any parabolic system exhibiting a Turing instability.  相似文献   

2.
In this work, we present a direct new method for constructing the rational Jacobi elliptic solutions for nonlinear differential–difference equations, which may be called the rational Jacobi elliptic function method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential–difference equations in mathematical physics via the lattice equation. The proposed method is more effective and powerful for obtaining the exact solutions for nonlinear differential–difference equations.  相似文献   

3.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau–Hyman, Rosenau–Pikovsky and Rosenau–Hyman–Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa–Holm, Degasperis–Procesi and Dullin–Gotwald–Holm equations. In both cases, we obtain new classes of solutions not studied before.  相似文献   

4.
In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.  相似文献   

5.
We study in this Note a deterministic particle method for heat (or Fokker–Planck) equations or for porous media equations. This method is based upon an approximation of these equations by nonlinear transport equations and we prove the convergence of that approximation. Finally, we present some numerical experiments for the heat equation and for an example of porous media equations.  相似文献   

6.
This paper presents a computational technique for the solution of the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations. The method is based on the composite collocation method. The properties of hybrid of block-pulse functions and Lagrange polynomials are discussed and utilized to define the composite interpolation operator. The estimates for the errors are given. The composite interpolation operator together with the Gaussian integration formula are then used to transform the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations into a system of nonlinear equations. The efficiency and accuracy of the proposed method is illustrated by four numerical examples.  相似文献   

7.
This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.  相似文献   

8.
9.
In recent years, many approaches have been utilized for finding the exact solutions of nonlinear systems of partial differential equations. In this paper, the first integral method introduced by Feng is adopted for solving some important nonlinear systems of partial differential equations, including, KdV, Kaup–Boussinesq and Wu–Zhang systems, analytically. By means of this method, some exact solutions for these systems of equations are formally obtained. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.  相似文献   

10.
In this work, we established the exact solutions for some nonlinear physical models. The tanh–coth method was used to construct solitary wave solutions of nonlinear evolution equations. The tanh–coth method presents a wider applicability for handling nonlinear wave equations.  相似文献   

11.
We consider the problem on the unique solvability of the inverse problem for a nonlinear partial Benney–Luke type integro-differential equation of the fourth order with a degenerate kernel. We modify the degenerate kernelmethod which has been designed for Fredholm integral equations of the second kind to apply to the case of the above-mentioned equation. We exploit the Fouriermethod of separation of variables. By means of designations, the Benney–Luke type integro-differential equation is reduced to a system of algebraic equations. Using an additional condition, we obtain the countable system of nonlinear integral equations with respect to the main unknown function. We employ the method of successive approximations together with the contraction mapping principle. Finally, the restore function is defined.  相似文献   

12.
In this article, an efficient hybrid method has been developed for solving some special type of nonlinear partial differential equations. Hybrid method is based on tanh–coth method, quasilinearization technique and Haar wavelet method. Nonlinear partial differential equations have been converted into a nonlinear ordinary differential equation by choosing some suitable variable transformations. Quasilinearization technique is used to linearize the nonlinear ordinary differential equation and then the Haar wavelet method is applied to linearized ordinary differential equation. A tanh–coth method has been used to obtain the exact solutions of nonlinear ordinary differential equations. It is easier to handle nonlinear ordinary differential equations in comparison to nonlinear partial differential equations. A distinct feature of the proposed method is their simple applicability in a variety of two‐ and three‐dimensional nonlinear partial differential equations. Numerical examples show better accuracy of the proposed method as compared with the methods described in past. Error analysis and stability of the proposed method have been discussed.  相似文献   

13.
In this paper, we consider reaction–diffusion systems arising from two-component predator–prey models with Smith growth functional response. The mathematical approach used here is in two folds since the time-dependent partial differential equations consist of both linear and nonlinear terms. We discretize the stiff or moderately stiff term with the fourth-order difference operator and advance the resulting nonlinear system of ordinary differential equations with the two competing families of the exponential time differencing (ETD) schemes, and we analyze them for stability. Numerical comparison between these two methods for solving various predator–prey population models with functional responses are also presented. Numerical results show that the techniques require less computational work. Also in the numerical results, some emerging spatial patterns are unveiled.  相似文献   

14.
In this paper, a new extended Riccati equation rational expansion method is suggested to constructing multiple exact solutions for nonlinear evolution equations. The validity and reliability of the method is tested by its application to the dispersive long wave system and the Broer–Kaup–Kupershmidt system. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

15.
In this article, we consider a class of nonlinear functional integral equations which has rather general form and contains a lot of particular cases such as functional equations and nonlinear integral equations of Volterra type. We use a combination of a fixed point method and cubic semiorthogonal B‐spline scaling functions to solve the integral equation numerically. We provide an error analysis for the method which shows that the approximate solution converges to the exact solution. Some numerical results for several test problems are given to confirm the accuracy and the ease of implementation of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 699–722, 2014  相似文献   

16.
In this paper, using the exp-function method we obtain some new exact solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt (KK) equations. We show figures of some of the new solutions obtained here. We conclude that the exp-function method presents a wider applicability for handling nonlinear partial differential equations.  相似文献   

17.
We consider a model system consisting of two reaction–diffusion equations, where one species diffuses in a volume while the other species diffuses on the surface which surrounds the volume. The two equations are coupled via a nonlinear reversible Robin-type boundary condition for the volume species and a matching reversible source term for the boundary species. As a consequence of the coupling, the total mass of the two species is conserved. The considered system is motivated for instance by models for asymmetric stem cell division.Firstly we prove the existence of a unique weak solution via an iterative method of converging upper and lower solutions to overcome the difficulties of the nonlinear boundary terms. Secondly, our main result shows explicit exponential convergence to equilibrium via an entropy method after deriving a suitable entropy entropy-dissipation estimate for the considered nonlinear volume-surface reaction–diffusion system.  相似文献   

18.
We investigate linear and weakly nonlinear properties of rotating convection in a sparsely packed Porous medium. We obtain the values of Takens–Bogdanov bifurcation points and co-dimension two bifurcation points by plotting graphs of neutral curves corresponding to stationary and oscillatory convection for different values of physical parameters relevant to rotating convection in a sparsely packed porous medium near a supercritical pitchfork bifurcation. We derive a nonlinear two-dimensional Landau–Ginzburg equation with real coefficients by using Newell–Whitehead method [16]. We investigate the effect of parameter values on the stability mode and show the occurrence of secondary instabilities viz., Eckhaus and Zigzag Instabilities. We study Nusselt number contribution at the onset of stationary convection. We derive two nonlinear one-dimensional coupled Landau–Ginzburg type equations with complex coefficients near the onset of oscillatory convection at a supercritical Hopf bifurcation and discuss the stability regions of standing and travelling waves.  相似文献   

19.
The major target of this paper is to construct new nonlinear boundary–initial value problems for Boussinesq–Burgers Equations, and derive the solutions of these nonlinear boundary–initial value problems by the simplified homogeneous balance method. The nonlinear transformation and its inversion between the Boussinesq–Burgers Equations and the linear heat conduction equation are firstly derived; then a new nonlinear boundary–initial value problem for the Boussinesq–Burgers equations with variable damping on the half infinite straight line is put forward for the first time, and the solution of this nonlinear boundary–initial value problem is obtained, especially, the decay mode solution of nonlinear boundary–initial value problem for the cylindrical (spherical) Boussinesq–Burgers equations is obtained.  相似文献   

20.
In this work we study four (3+1)-dimensional nonlinear evolution equations, generated by the Jaulent–Miodek hierarchy. We derive multiple soliton solutions for each equation by using the Hereman–Nuseir form, a simplified form of the Hirota’s method. The obtained soliton solutions are characterized by distinct phase shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号