首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Four new sulfonate metabolites of andrographolide, 14-deoxy-12(R)-sulfo andrographolide (Metabolite 1), 14-deoxy-12(S)-sulfo andrographolide (Metabolite 2), 14-deoxy-12(R)-sulfo-9(S)-andrographolide (Metabolite 3) and 14-sulfo isoandrographolide (Metabolite 4), were isolated from urine and feces in rats. Their structures were elucidated by chemical and spectroscopic analyses. These four metabolites were formed through a rare metabolic reaction and were all new compounds.  相似文献   

2.
Neomangiferin (NMF) is an extremely special xanthone that could be simultaneously attributed to C-glycoside and O-glycoside with a variety of biological activities, such as anti-inflammatory, antitumor, antipyretic, and so on. So far as we know, the metabolism profiling has been insufficient until now. Herein, Drug Metabolite Cluster Centers (DMCCs)-based Strategy has been developed to profile the NMF metabolites in vivo and in vitro. Firstly, the DMCCs was proposed depending on literature-related and preliminary analysis results. Secondly, the specific metabolic rule was implemented to screen the metabolites of candidate DMCCs from the acquired Ultra High Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) data by extracted ion chromatography (EIC) method. Thirdly, candidate metabolites were accurately and tentatively identified according to the pyrolysis law of mass spectrometry, literature reports, comparison of reference substances, and especially the diagnostic product ions (DPIs) deduced preliminarily. Finally, network pharmacology was adopted to elucidate the anti-inflammatory action mechanism of NMF on the basis of DMCCs. As a result, 3 critical metabolites including NMF, Mangiferin (MF) and Norathyriol (NA) were proposed as DMCCs, and a total of 61 NMF metabolites (NMF included) were finally screened and characterized coupled with 3 different biological sample preparation methods including solid phase extraction (SPE), acetonitrile precipitation and methanol precipitation. Among them, 32 metabolites were discovered in rat urine, 30 in rat plasma, 12 in rat liver, 9 metabolites in liver microsomes and 8 in rat faeces, respectively. Our results also illustrated that NMF primarily underwent deglucosylation, glucuronidation, methylation, sulfation, dihydroxylation and their composite reactions in vivo and in vitro. Additionally, network pharmacology analysis based on DMCCs revealed 85 common targets of disease-metabolites, and the key targets were TNF, EGFR, ESR1, PTGS2, HIF1A, IL-2, PRKCA and PRKCB. They exerted anti-inflammatory effects mainly through the pathways of inflammatory response, calcium-dependent protein kinase C activity, nitrogen metabolism, pathways in cancer and so on. In general, our study constructed a novel strategy to comprehensive elucidate the biotransformation pathways of NMF in vivo and in vitro, and provided vital reference for further understanding its anti-inflammatory action mechanism. Moreover, the established strategy could be generalized to the metabolism and action mechanism study of other natural products.  相似文献   

3.
Substance P (SP) belongs to the tachykinin family and plays an essential role in pain transmission and in neurogenic inflammation. It can be detected in the central and peripheral nervous systems. The objectives of this study were to establish SP metabolic stability in liver microsomes in three species (rat, mouse and human), and identify and characterize SP metabolites by LC‐MS/MS. Endogenous peptide metabolism is not well documented and this is particularly true for neuropeptides participating in neurogenic inflammation. In vitro, T1/2 results in pooled liver microsomes were 9.2, 5.6 and 18.6 min for rat, mouse and human liver microsomes, respectively. Five major SP metabolites were identified and quantified, including C‐terminal SP fragments SP3–11, SP5–11, SP6–11, SP8–11 as well as N‐terminal fragment SP1–7. The results suggest significant differences between species in SP metabolite concentrations. Consequently, the metabolic profile of each species is distinctive and may have a significant impact on biomolecular mechanisms involved in specific pathophysiological changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Human toxic responses are very often related to metabolism. Liver metabolism is traditionally studied, but other organs also convert chemicals and drugs to reactive metabolites leading to toxicity. When DNA damage is found, the effects are termed genotoxic. Here we describe a comprehensive new approach to evaluate chemical genotoxicity pathways from metabolites formed in situ by a broad spectrum of liver, lung, kidney and intestinal enzymes. DNA damage rates are measured with a microfluidic array featuring a 64-nanowell chip to facilitate fabrication of films of DNA, electrochemiluminescent (ECL) detection polymer [Ru(bpy)2(PVP)10]2+ {(PVP = poly(4-vinylpyridine))} and metabolic enzymes. First, multiple enzyme reactions are run on test compounds using the array, then ECL light related to the resulting DNA damage is measured. A companion method next facilitates reaction of target compounds with DNA/enzyme-coated magnetic beads in 96 well plates, after which DNA is hydrolyzed and nucleobase-metabolite adducts are detected by LC-MS/MS. The same organ enzymes are used as in the arrays. Outcomes revealed nucleobase adducts from DNA damage, enzymes responsible for reactive metabolites (e.g. cyt P450s), influence of bioconjugation, relative dynamics of enzymes suites from different organs, and pathways of possible genotoxic chemistry. Correlations between DNA damage rates from the cell-free array and organ-specific cell-based DNA damage were found. Results illustrate the power of the combined DNA/enzyme microarray/LC-MS/MS approach to efficiently explore a broad spectrum of organ-specific metabolic genotoxic pathways for drugs and environmental chemicals.  相似文献   

5.
Determination of the metabolism pathway of xenobiotics undergoing the hepatic pass is a crucial aspect in drug development since the presence of toxic biotransformation products may result in significant side effects during the therapy. In this study, the complete hepatic metabolism pathway of dapoxetine established according to the human liver microsome assay with the use of a high-resolution LC–MS system was described. Eleven biotransformation products of dapoxetine, including eight metabolites not reported in the literature so far, were detected and identified. N-dealkylation, hydroxylation, N-oxidation and dearylation were found to be the main metabolic reactions for the investigated xenobiotic. In silico analysis of toxicity revealed that the reaction of didesmethylation may contribute to the increased carcinogenic potential of dapoxetine metabolites. On the other hand, N-oxidation and aromatic hydroxylation biotransformation reactions possibly lead to the formation of mutagenic compounds.  相似文献   

6.
Dimethocaine (DMC, larocaine), a synthetic derivative of cocaine, is a widely distributed “legal high” consumed as a “new psychoactive substance” (NPS) without any safety testing, for example studies of metabolism. Therefore, the purpose of this work was to study its in-vivo and in-vitro metabolism by use of liquid chromatography–(high resolution) mass spectrometry (LC–HRMS n ). DMC was administered to male Wistar rats (20 mg kg?1) and their urine was extracted either by solid-phase extraction after enzymatic cleavage of conjugates or by use of protein precipitation (PP). The metabolites were separated and identified by LC–HRMS n . The main phase I reactions were ester hydrolysis, deethylation, hydroxylation of the aromatic system, and a combination of these. The main phase II reaction was N-acetylation of the p-aminobenzoic acid part of the unchanged parent compound and of several phase I metabolites. The metabolites identified were then used for identification of DMC in rat urine after application of a common user’s dose. By use of GC–MS and LC–MS n standard urine-screening approaches (SUSAs), DMC and its metabolites could be detected in the urine samples.  相似文献   

7.
This pilot study was performed to study the main metabolic reactions of four synthetic cannabinoids: JWH-015, JWH-098, JWH-251, and JWH-307 in order to setup a screening method for the detection of main metabolites in biological fluids. In silico prediction of main metabolic reactions was performed using MetaSite? software. To evaluate the agreement between software prediction and experimental reactions, we performed in vitro experiments on the same JWHs using rat liver slices. The obtained samples were analyzed by liquid chromatography-quadrupole time-of-flight and the identification of metabolites was executed using Mass-MetaSite? software that automatically assigned the metabolite structures to the peaks detected based on their accurate masses and fragmentation. A comparison between the experimental findings and the in silico metabolism prediction using MetaSite? software showed a good accordance between experimental and in silico data. Thus, the use of in silico metabolism prediction might represent a useful tool for the forensic and clinical toxicologist to identify possible main biomarkers for synthetic cannabinoids in biological fluids, especially urine, following their administration.
Figure
JWH-098: Most probable predicted sites of metabolism and main metabolites formed in vitro  相似文献   

8.
9.
Tanshinol borneol ester (DBZ) is a potential drug candidate composed of danshensu and borneol. It shows anti‐ischemic and anti‐atherosclerosis activity. However, little is known about its metabolism in vivo. This research aimed to elucidate the metabolic profile of DBZ through analyzing its metabolites using high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Chromatographic separation was performed on an Agilent TC‐C18 column (150 × 4.6 mm, 5.0 μm) with gradient elution using methanol and water containing 0.2% (v/v) formic acid as the mobile phase. Metabolite identification involved analyzing the retention behaviors, changes in molecular weights and MS/MS fragment patterns of DBZ and its metabolites. As a result, 20 potential metabolites were detected and tentatively identified in rat plasma, urine and feces after administration of DBZ. DBZ could be metabolized to O‐methylated DBZ, DBZ‐O‐glucuronide, O‐methylated DBZ‐O‐glucuronide, hydroxylated DBZ and danshensu. Danshensu, a hydrolysis product of DBZ, could further be transformed into 12 metabolites. The proposed method was confirmed to be a reliable and sensitive alternative for characterizing metabolic pathways of DBZ and providing valuable information on its druggability.  相似文献   

10.
The aim of this study was to characterize the serum metabolic profiles of patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (AMCI) using metabolomics based on gas chromatography–mass spectrometry (GC/MS). Serum samples were collected from patients with AD (n = 30) and AMCI (n = 32), and normal healthy controls (NOR, n = 40). Metabolite profiles were performed with GC/MS in conjunction with multivariate statistical analysis, and possible biomarker metabolites were identified. Thirty-one kinds of endogenous metabolites could be identified simultaneously. Eleven components were chosen as biomarker metabolites between AD and NOR groups, and these metabolites were closely related to seven biological pathways: arginine and proline metabolism, phenylalanine metabolism, β-alanine metabolism, primary bile acid synthesis, glutathione metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Meanwhile, 10 components were chosen as biomarker metabolites between AMCI and NOR groups and seven biological pathways were closely related: arginine and proline metabolism, phenylalanine metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, taurine and hypotaurine metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Our study distinguished serum metabotypes between AD, AMCI and NOR patients successfully. The implementation of this metabolomic strategy may help to develop biochemical insight into the metabolic alterations in AD/AMCI and will be helpful for the further understanding of pathogenesis.  相似文献   

11.
The rate coefficients k for the nearly thermoneutral atom abstraction reactions of N+ ions with H2, HD and D2 have been determined as a function of ion-molecule centre-of-mass energy, KEcm, in a SIFDT apparatus, over the range of KEcm from thermal energy at 300 K to ≈ 0.5 eV. From Arrhenius-type plots of ln k versus (KEcm)−1, values of the thermicities of the reactions, ΔE, have been determined. The differences in the values of ΔE obtained for the reactions are accounted for by differences in the vibrational zero-point energies of the reactant and product molecules. From the data, the absolute proton affinity of the N atom is found to be 3.531 eV.  相似文献   

12.
Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from 13C‐enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing 13C‐labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the 13C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the 13C/12C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.  相似文献   

13.
Metabolomics can provide an opportunity to develop the systematic analysis of the metabolites in biological samples and has been increasingly applied to discovering and identifying biomarkers and perturbed pathways. It enables us to better understand the metabolic pathways which can clarify the mechanism of traditional Chinese medicines (TCM). Yinchenhao (YCH, Artemisia annua L), a famous TCM plant, has been used clinically for more than a thousand years to relieve liver diseases in Asia, and its mechanisms are not still completely clear. Here, metabolomic techniques may provide additional insight, and our investigation was designed to assess the effects and possible mechanisms of YCH on α-naphthylisothiocyanate (ANIT)-induced liver injury. Metabolite profiling was performed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) combined with pathway analysis and pattern recognition approaches including independent component analysis (ICA) and partial least squares-discriminant analysis (PLS-DA). Biochemistry test was also performed for the liver tissue and plasma samples. The changes in metabolic profiling were restored to their baseline values after YCH treatment according to the ICA score plots. Of note, YCH has a potential pharmacological effect through regulating multiple perturbed pathways to normal state, correlating well to the assessment of biochemistry test. Five different potential biomarkers in the positive mode contributing to the treatment of YCH were discovered. Pathway analysis showed that these metabolites were associated with perturbations in pyrimidine metabolism, primary bile acid biosynthesis, and propanoate metabolism, which may be helpful to further understand the action mechanisms of YCH. It showed that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and drug discovery.  相似文献   

14.
Xiao‐Qing‐Long‐Tang is a traditional Chinese formula used for the treatment of cold syndrome, bronchitis, and nasal allergies for thousands of years. However, the in vivo integrated metabolism of its multiple components and the active chemical constituents of Xiao‐Qing‐Long‐Tang remain unknown. In this study, a method using ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry was established for the detection and identification of the metabolites in human and rat urine after oral administration of Xiao‐Qing‐Long‐Tang. A total of 19 compounds were detected or tentatively identified in human urine samples, including eight prototypes and 11 metabolites. Also, a total of 50 compounds were detected or tentatively identified in rat urine samples, including 15 prototypes and 35 metabolites detected with either a highly sensitive extracted ion chromatogram method or the MSE determination using Mass Fragment software. Our results indicated that phase Ⅱ reactions (e.g. glucuronidation and sulfation) were the main metabolic pathways of flavones, while phase I reactions (e.g. demethylation and hydroxylation) were the major metabolic reaction for alkaloids, lignans, and ginger essential oil. This investigation provided important structural information on the metabolism of Xiao‐Qing‐Long‐Tang and provided evidence to obtain a more comprehensive metabolic profile.  相似文献   

15.
Two new methods for the synthesis of orthoesters and compounds containing an orthoester moiety (dihydroisoxazoles) are presented. Mixed orthoesters of general formulas RC(OR1)(OR2)2 and RC(OR1)(OR2)(OR3) were prepared via addition of ROH (R = Bu or m-methylphenyl) to O-allyl acetals (acrolein acetals: diethyl or cyclic, i.e., 2-vinyl-1,3-dioxanes or dioxolanes). The catalytic systems for these reactions were generated from [RuCl2(PPh3)3] and Na2CO3; {[RuCl2(COD)]x} or {[OsCl2(1,5-COD)]x}, PPh3, and Na2CO3. Compounds containing an orthoester moiety (dihydroisoxazoles) were prepared via tandem isomerization of O-allyl acetals (to O-vinyl acetals) catalyzed by ruthenium complexes followed by cycloaddition to in situ-generated 2,6-dichlorophenylnitrile oxide.  相似文献   

16.
Resveratrol is an antitoxin secreted by plants such as Polygonum cuspidatum Sieb. et Zucc and Vitis vinifera L. when they are attacked by pathogens. In the present study, three methods were used to prepare biological samples, and then an efficient strategy based on ultra-high-performance liquid chromatography-linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) was developed to screen and identify resveratrol metabolites in rat urine, plasma and faeces. As a result, a total of 56 resveratrol metabolites were screened and characterized. Among them, 39 metabolites were found in rat urine, while 6 and 16 metabolites were characterized from rat plasma and faeces, respectively. In addition, 56, 12 and 15 metabolic products were screened by solid phase extraction (method I), methanol precipitation (method II) and acetonitrile precipitation (method III), respectively, indicating that method I could be adopted as the most acceptable method. The results also demonstrated that resveratrol mainly underwent glucuronidation, glucosylation, sulfation, hydroxylation, dehydrogenation, hydrogenation, methylation and their composite reactions. Moreover, these metabolic reactions occurred to form a possible metabolic network that is similar to a triangular pyramid model. In summary, this research provides an idea for the further study of drug metabolism.  相似文献   

17.
The complex triplet potential energy surface for the reaction of the triplet oxygen atom O(3P) with cis-2-butene is investigated at the CBS-QB3 level of theory. The different possible isomerization and dissociation pathways, including both O-additions and H-abstractions, are thoroughly studied. Our calculations show that as found for the trans-2-butene reaction, in the high-pressure limit, the major product is CH3CHC(O)H + CH3 (P1), whereas in the low-pressure limit the most thermodynamically stable product forms CH3CO + CH3CH2 (P4). The experimental negative activation energy reported for the addition step is very well reproduced at the CBS-QB3 level of theory. Various thermodynamic and kinetic values of interest for these reactions are predicted for the first time. A discussion on the negative activation energy for the addition step of the trans- and cis-2-butene reactions with O(3P) focussing on the addition reactant complexes is presented.  相似文献   

18.
Nowadays, 2-ethylhexyl 4-(N,N-dimethylamino)benzoate (EDP) is one of the most widely used UV filters in sunscreen cosmetics and other cosmetic products. However, undesirable processes such as percutaneous absorption and biological activity have been attributed to this compound. The in vitro metabolism of EDP was elucidated in the present work. First of all, the phase I biotransformation was studied in rat liver microsomes and two metabolites, N,N-dimethyl-p-aminobenzoic acid (DMP) and N-monomethyl-p-aminobenzoic acid (MMP), were identified by GC-MS analysis. Secondly, the phase II metabolism was investigated by means of LC-MS. The investigated reactions were acetylation and glucuronidation working with rat liver cytosol and with both human and rat liver microsomes, respectively. Analogue studies with p-aminobenzoic acid (PABA) were carried out in order to compare the well established metabolic pathway of PABA with the unknown biotransformation of EDP. In addition, a method for the determination of EDP and its two phase I metabolites in human urine was developed. The methodology requires a solid-phase extraction prior to LC-MS analysis. The method is based on standard addition quantification and has been fully validated. The repeatability of the method, expressed as relative standard deviation, was in the range 3.4–7.4% and the limit of detection for all quantified analytes was in the low ng mL?1 range.  相似文献   

19.
Predictive metabolism methods can be used in drug discovery projects to enhance the understanding of structure-metabolism relationships. The present study uses data mining methods to exploit biotransformation data that have been recorded in the MDL Metabolite database. Reacting center fingerprints were derived from a comparison of substrates and their corresponding products listed in the database. This process yields two fingerprint databases: all atoms in all substrates and all reacting centers. The metabolic reaction data are then mined by submitting a new molecule and searching for fingerprint matches to every atom in the new molecule in both databases. An "occurrence ratio" is derived from the fingerprint matches between the submitted compound and the reacting center and substrate fingerprint databases. Normalization of the occurrence ratio within each submitted molecule enables the results of the search to be rank-ordered as a measure of the relative frequency of a reaction occurring at a specific site within the submitted molecule. Predictive performance that would allow this method to be used by drug discovery teams to generate useful hypotheses regarding structure metabolism relationships was observed.  相似文献   

20.
8‐Prenylkaempferol is a prenylflavonoid that has various bioactivities and benefits for human health. A high‐performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time‐of‐flight multistage mass spectrometry (HPLC‐DAD‐ESI‐IT‐TOF‐MSn) method was established to profile and identify the metabolites of 8‐prenylkaempferol in rat in vivo and in vitro, and to study the distribution of these metabolites in rats for the first time. A total of 38 metabolites were detected and tentatively identified, 30 of which were identified as new compounds. The new in vivo metabolic reactions in rats of prenylflavonoids of isomerization, polymerization, sulfation, amino acid conjugation, vitamin C conjugation and other known metabolic reactions were found in the metabolism of 8‐prenylkaempferol. The numbers of detected metabolites in feces, urine, plasma, small intestine, stomach, kidneys, liver, heart, lungs, spleen and hepatic S9 fraction were 31, 19, 1, 20, 13, 8, 7, 3, 3, 1 and 11, respectively. This indicated that small intestine and stomach were the major organs in which the 8‐prenylkaempferol metabolites were distributed. Furthermore, 16 metabolites were determined to have bioactivities based on the literature and ‘PharmMapper’ analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological actions of 8‐prenylkaempferol. Moreover, they provide a reference for the study of the metabolism and distribution of prenylflavonoid aglycone compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号