首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fabricated multiple stacked self-organized InGaAs quantum dots (QDs) on GaAs (3 1 1)B substrate by atomic hydrogen-assisted molecular beam epitaxy (H-MBE) to realize an ordered three-dimensional QD array. High quality stacked QDs with good size uniformity were achieved by using strain-compensation growth technique, in which each In0.35Ga0.65As QD layer was embedded by GaNAs strain-compensation layer (SCL). In order to investigate the effect of spacer layer thickness on vertical alignment of InGaAs/GaNAs QDs, the thickness of GaNAs SCL was varied from 40 to 20 nm. We observed that QDs were vertically aligned in [3 1 1] direction when viewed along [0 1 −1], while the alignment was inclined when viewed along [−2 3 3] for all samples with different SCL thickness. This is due to their asymmetric shape along [−2 3 3] with two different dominant facets thereby the local strain field around QD extends further outward from the lower-angle facet. Furthermore, the inclination angle of vertical alignment QDs became monotonously smaller from 22° to 2° with decreasing SCL thickness from 40 to 20 nm. These results suggest that the strain field extends asymmetrically resulting in vertically tilted alignment of QDs for samples with thick SCLs, while the propagated local strain field is strong enough to generate the nucleation site of QD formation just above lower QD in the sample with thinner SCLs.  相似文献   

2.
We report on the optical characteristics of InAs quantum dots based on the InP(1 0 0) substrate grown by gas source molecular beam epitaxy without assisting any other methods. The photoluminescence was carefully investigated by adjusting the thickness of InAs layers and the growth temperature. A wide range of emitting peaks is obtained with the increase in the thickness of InAs layers. In addition, we find that the morphology and shape of quantum dots also greatly depend on InAs layers. The images of atomic force microscopy show that the quantum dots like forming into quantum dashes elongated along the [0 1 ?1] direction when the thickness of InAs layers increased. A critical thickness of formation quantum dots or quantum dash is obtained. At the same time, we observe that the growth temperature also has a great impact on the emission wavelength peaks. High qualities of InAs/InP(1 0 0) quantum dots providing their emission wavelength in 1.55 μm are obtained, and good performances of quantum dots lasers are fabricated.  相似文献   

3.
We have studied photoluminescence (PL) observed from single isoelectronic traps formed by nitrogen pairs in nitrogen δ-doped GaAs layers grown on GaAs(1 1 1)A substrates. The PL was composed of a single peak with a narrow linewidth of ∼80 μeV. Polarized PL measurements confirmed that the emission from single isoelectronic traps in nitrogen δ-doped GaAs(1 1 1) is unpolarized irrespective of nitrogen pair arrangements. These results can be explained by in-plane isotropy of the samples, which is consistent with the symmetrical property of GaAs(1 1 1), and demonstrate that utilizing (1 1 1) substrate is an effective means for obtaining unpolarized single photons, which are desirable for the application to quantum cryptography.  相似文献   

4.
We have investigated the optical properties of InAs/GaAs (1 1 3)A quantum dots grown by molecular beam epitaxy (MBE) with different growth rates by photoluminescence spectroscopy (PL) as a function of the excitation density and the sample temperature (10–300 K). Reflection high-energy electron diffraction (RHEED) is used to investigate the formation process of InAs quantum dots (QDs). A redshift of the InAs QDs PL band emission was observed when the growth rate was increased. This result was explained by the increase of the InAs quantum dot size with increasing growth rate. A significant redshift was observed when the arsenic flux was decreased. The evolution of the PL peak energy with increasing temperature has showed an S-shaped form due to the localization effects and is attributed to the efficient relaxation process of carriers in different InAs quantum dots and to the exciton transfer localized at the wetting layer.  相似文献   

5.
The magnetic properties of uncovered Fe/ZnSe/GaAs(1 0 0) ultrathin films have been determined in situ by magneto-optical Kerr effect (MOKE). Fe films up to 10 monolayers (ML) thick were deposited on c(2×2) Zn-rich ZnSe/GaAs(0 0 1) surfaces at 180 °C. We have studied the thickness dependence of the in-plane lattice parameter of the Fe films and of the MOKE hysteresis loops in the longitudinal geometry, at 150 K, under magnetic fields up to 0.1 T applied along the [1 1 0] and [1-1 0] directions of the ZnSe(0 0 1). Reflection high energy electron diffraction show that in the low thickness regime the Fe films present an in-plane structural anisotropy characterized by an expansion along the [1 1 0] direction. Hysteretic loops were obtained only starting from ∼5 ML Fe. We found the onset of an uniaxial magnetic anisotropy with [1 1 0] magnetic easy axis at 7 ML Fe.  相似文献   

6.
Effects of growth conditions on the formation of InAs quantum dots (QDs) grown on GaAs (1 1 5)A substrate were investigated by using the reflection high-energy electron diffraction (RHEED) and photoluminescence spectroscopy (PL). An anomalous evolution of wetting layer was observed when increasing the As/In flux ratio. This is attributed to a change in the surface reconstruction. PL measurements show that QDs emission was strongly affected by the InAs deposited amount. No obvious signature of PL emission QDs appears for sample with 2.2 ML InAs coverage. Furthermore, carrier tunneling from the dots to the non-radiative centers via the inclination continuum band is found to be the dominant mechanism for the InAs amount deposition up to 4.2 MLs.  相似文献   

7.
A.V. Vasev 《Surface science》2008,602(11):1933-1937
Optical properties of MBE-grown GaAs(0 0 1) surfaces have been studied by spectroscopic ellipsometry under dynamic conditions of ramp heating and cooling after desorption of passivating As-cap-layer with low pressure H2 atmosphere (14 Torr) applied to the surface. The temperature dependence of GaAs pseudo-dielectric function with atomically smooth (0 0 1) surface carrying the fixed Ga-rich (4 × 2) reconstruction was obtained for the temperature range of 160–600 °C. It is shown ellipsometrically that GaAs(0 0 1) heating in the molecular hydrogen atmosphere results in the formation of hydrogenated layer on the surface.  相似文献   

8.
We report the growth of self-assembled InAs/GaAs quantum dots (QDs) on germanium-on-insulator-on-silicon (GeOI/Si) substrate by antimony-mediated metal organic chemical vapor deposition. The influence of various growth procedures for the GaAs buffer layer on the QD formation and optical quality was investigated. We obtained QDs with density above 1010 cm−2, and ground state emission in the 1.3 μm band at room temperature. These results demonstrate the promising suitability of germanium-on-insulator for the monolithic integration of QD-based and other GaAs-based photonic devices on silicon.  相似文献   

9.
We investigated the emission wavelength dependence of the lasing polarization in a (1 1 0)-oriented vertical-cavity surface-emitting laser (VCSEL) with GaAs/AlGaAs quantum wells under optical spin injection at room temperature. Lasing was observed in the one circularly polarized mode over a wide wavelength range from 838 to 857 nm, in which a degree of circular polarization higher than 0.8 was maintained. The optical gain spectrum that contributed to the circularly polarized lasing is discussed based on the optical selection rules and the measured polarization-resolved photoluminescence spectra of the active layers.  相似文献   

10.
We report two approaches using Quantum Well Infrared Photodetectors for detection in the [3–4.2 μm] atmospheric window. Taking advantage of the large band gap discontinuity we demonstrated a strained AlInAs/InGaAs heterostructure on InP. The optical coupling in this structure has been experimentally and numerically investigated. The results show that the coupling is mainly due to guided modes. The second approach is based on double barrier strained AlGaAs/AlAs/GaAs/InGaAs active layers on GaAs. The segregation of the elements III in these structures has been investigated using a transmission electron microscope. The results show a strong modification of the conduction band profile. We demonstrate peak wavelengths at 3.9 μm for the InP based detector and 4.0 μm for the GaAs based detector. We report a background limited peak detectivity (2π field of view, 300 K background) at 4.0 μm of about 2 × 1011 cm Hz1/2 W?1 at 77 K, and 1.5 × 1011 cm Hz1/2 W?1 at 100 K.  相似文献   

11.
Edge adsorption and terrace molecular domain structures of Cobalt(II) tetraphenylporphyrin (CoTPP) on Au(1 1 1) were investigated using STM at room temperature. Two different terrace domain structures were observed. These two arrangements were found to be enantiomorphous arrangements of the molecular assemblies, where the molecular rows rotate ±16° with respect to the [1 2 1] direction of Au(1 1 1). In both arrangements, most of the CoTPP molecules were imaged as one bright dot with four legs, corresponding to a planar conformation of the macrocycle. A small proportion of the CoTPP molecules appear as two bright dots, corresponding to a saddle shape of the macrocycle. Our results show that most of the saddle-deformed CoTPP molecules are distributed in the vicinity of the bridging sites of the reconstructed gold surface. Besides terrace domains, we found that several edge adsorption structures of CoTPP are also stable enough to be imaged and analysed in detail. Furthermore, the relationship between edge structures and terrace domains was revealed.  相似文献   

12.
Polycrystalline thin Ni films deposited onto GaAs (0 0 1) show a transition of the magnetic anisotropy depending on its thickness. The anisotropy is perpendicular to the film plane for the thicknesses of the film ⩽12 nm. This becomes in-plane in the films having thicknesses ⩾15 nm. The films are deposited onto the n-type GaAs (0 0 1) substrate by the usual thermal evaporation method and also by the electron beam evaporation in ultra high vacuum onto a GaAs epilayer in the standard molecular beam epitaxy system. The magnetization and ferromagnetic resonance (FMR) are observed in the temperature range from 4.2 to 300 K. For the discussion of the microscopic origin of the anomalous properties in magnetization and FMR experiments, the experimental results are reviewed by introducing a uniaxial anisotropy, which is calculated from the easy-axis and hard-axis magnetization data. This calculated anisotropy is able to explain the temperature and angle dependency of the FMR spectra of the Ni films. Hence the magnetization and FMR spectra are in agreement with the type of the anisotropy and its temperature dependency. In addition to these, the temperature dependence of the in-plane magnetic anisotropy is able to explain the previously reported anomalous effect of reducing the squareness at low temperatures in Ni/GaAs.  相似文献   

13.
It has been recently shown that Co can grow epitaxially on an Au(1 1 1) layer with a face centered cubic (FCC) structure, the Co[1 1 1] and Au[1 1 1] axes being oriented along each other. First magneto-optical studies of the FCC Co film structure are reported here. The differences in magnetic behavior for FCC and HCP-type Co films as a function of the layer thickness are underlined and interpreted in the framework of a phenomenological model.  相似文献   

14.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

15.
We have investigated the effect of strain compensation on the structural and optical properties of multiple stacked InAs quantum dots (QDs) on GaAs (0 0 1) substrates grown by atomic hydrogen-assisted RF-MBE. Strain relaxation was not observed from the reciprocal space mapping, and as a result, dislocations and coalesced islands were not observed in 50 layer-stacked QDs. Thus, the total QD density of as high as 2.5×1012 cm−2 was achieved. For QD solar cell characterization, the short-circuit current density increased from 21.0 to 26.4 mA/cm2 as the number of stacks was increased from 20 to 50. Further increase of stacks did not affect the open-circuit voltage of ∼0.7 V and diode factor of ∼1.6, which implies that high crystalline quality was maintained even after 50 layers of stacking.  相似文献   

16.
We have investigated effects of growth temperature of thin GaAs capping layer in the initial stage of indium-flush process using atomic force microscopy and microscopic photoluminescence (μ-PL) methods. The shape of capped InAs quantum dot (QD) and its μ-PL properties are sensitive to the growth temperature of thin GaAs capping layer. In the case of the high temperature cap, the QD shape in initial capping stage is elongated along the [1 1 −0] direction, and μ-PL spectrum shows several peaks accompanied with indefinite peaks. On the other hand, the low temperature case, the QD shape is kept in isotropic and μ-PL spectrum shows distinctive emissions from excitonic states of the QD with suppressed indefinite peaks. These results indicate that the low temperature capping is effective to keep an isotropic shape of QD and suppress indefinite peaks.  相似文献   

17.
Following the concept of spin-injection into a semiconductor-based device, a ferromagnetic element (like a GMR multilayer structure) can be used as a spin filter. A high spin-polarization of the electrons can be realized by the preparation of a monocrystalline multilayer structure consisting of ultrathin films of a high magnetic polarization. In the case of ultrathin films, the manipulation of the easy-axis of magnetization is possible, by changing the anisotropy terms contributing to the effective anisotropy of the structure. We report on the structural and magnetic properties of Ni/Fe and Fe/Ni bilayers epitaxially grown on GaAs(0 0 1). By a proper choice of Fe and Ni sequences (Fe/Ni/GaAs) and their thickness (up to 3 ML of Fe on the top of Ni), the rotation of magnetization from the in-plane to the out-of-plane direction was achieved.  相似文献   

18.
A multilayer structure has been proposed that demonstrates improved (0 0 1) texture for FePt-based L10 perpendicular media. Achieving a strong perpendicular magnetic anisotropy requires aligning the L10 crystallographic c-axis along the film normal. The ordered L10 FePt structure is tetragonal with a c/a ratio close to 0.965. This makes discriminating between the three crystallographic variants ([1 0 0], [0 1 0], and the desired [0 0 1]) difficult. Alloying FePt with Cu to reduce the c/a ratio and using a multilayer approach to keep the magnetic layers thin results in a structure with an adjustable Mrt and a strong (0 0 1) texture (rocking curve widths around 2°). This is a remarkable improvement in texture from pure FePt multilayered films or monolithic FePt(X) films. The proposed [MgO(2 nm)/Fe50−xPt50Cux(5 nm)]×n structure limits grain size in the vertical (perpendicular) direction albeit not in the plane of the film. Carbon can be added to the FePtCu layer to reduce the grain size with minimal degradation of the (0 0 1) orientation.  相似文献   

19.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

20.
《Surface science》2006,600(8):1654-1658
We present a theoretical study of the metallization of Ge(0 0 1)-p(2 × 1) surface which is observed in experimental data. We have considered the connection between thermal fluctuation of this surface structure and its metallic properties. To this end we have performed long-time MD-DFT simulations. The obtained results show that thermal fluctuation of the Ge(0 0 1)-p(2 × 1) structure may cause its metallization which in not necessary connected with a flip-flop motion of dimer atoms. It was shown that the metallization of the Ge(0 0 1)-p(2 × 1) surface takes place when the dimer buckling angle is reduced to around 11°. In the case of our simulations the considered surface system remained in the metallic state for 25% of the simulation time. We have also found that the metallic state of the fluctuating Ge(0 0 1)-p(2 × 1) surface is built up by dangling bonds of the dimer atoms shifted up (Dup) and down (Ddown).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号