首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic state of a single magnetic atom (Mn) embedded in an individual semiconductor quantum dot is optically probed using micro-spectroscopy. A high degree of spin polarization can be achieved for an individual Mn atom localized in a quantum dot using quasi-resonant or fully-resonant optical excitation at zero magnetic field. Optically created spin polarized carriers generate an energy splitting of the Mn spin and enable magnetic moment orientation controlled by the photon helicity and energy. The dynamics and the magnetic field dependence of the optical pumping mechanism shows that the spin lifetime of an isolated Mn atom at zero magnetic field is controlled by a magnetic anisotropy induced by the built-in strain in the quantum dots. The Mn spin distribution prepared by optical pumping is fully conserved for a few microseconds. This opens the way to full optical control of the spin state of an individual magnetic atom in a solid state environment.  相似文献   

2.
We study the orbital and spin dynamics of charge carriers induced by non-overlapping linearly polarized light pulses in semiconductor quantum wells. It is shown that such an optical excitation with coherent pulses leads to a spin orientation of photocarriers and an electric current. The effects are caused by the interference of optical transitions driven by individual pulses. The distribution of carriers in the spin and momentum spaces depends on the crystallographic orientation of quantum wells and can be efficiently controlled by the pulse polarizations, time delay and phase shift between the pulses, as well as an external magnetic field.  相似文献   

3.
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.  相似文献   

4.
Spin interactions are studied between conduction band electrons in GaAs heterostructures and local moments, specifically the spins of constituent lattice nuclei and of partially filled electronic shells of impurity atoms. Nuclear spin polarizations are addressed through the contact hyperfine interaction resulting in the development of a method for high-field optically detected nuclear magnetic resonance sensitive to 108 nuclei. This interaction is then used to generate nuclear spin polarization profiles within a single parabolic quantum well; the position of these nanometer-scale sheets of polarized nuclei can be shifted along the growth direction using an externally applied electric field. In order to directly investigate ion spin dynamics, doped GaMnAs quantum wells are fabricated in the regime of very low Mn concentrations. Measurements of coherent electron spin dynamics show an antiferromagnetic exchange between s-like conduction band electrons and electrons localized in the d-shell of the Mn impurities, which varies as a function of well width.  相似文献   

5.
R. Vali  S. Salehi 《Solid State Communications》2010,150(47-48):2306-2309
By combining the spin dependent transport properties of the ferromagnetic semiconductors with the basic physics of the quantum point contacts, we investigate the spin polarized transport through ferromagnetic semiconductor quantum point contacts. We find that the spin conductance strongly depends on the spin orientation, the magnitude of the spin splitting energy and the shape of the cross sections of the point contacts.  相似文献   

6.
Conduction electrons are used to optically polarize, detect, and manipulate nuclear spin in a (110) GaAs quantum well. Using optical Larmor magnetometry, we find that nuclear spin can be polarized along or against the applied magnetic field, depending on field polarity and tilting of the sample with respect to the optical pump beam. Periodic optical excitation of the quantum-confined electron spin reveals a complete spectrum of optically induced and quadrupolar-split nuclear resonances, as well as evidence for Deltam = 2 transitions.  相似文献   

7.
We present a theory of magnetic exchange interactions in quantum dots containing electrons and magnetic ions. We find the interaction between the electron and Mn ion to depend strongly on the number of electrons. It can be switched off for closed shell configurations and maximized for partially filled shells. However, unlike the total electron spin S which is maximized for half-filled shells, we predict the exchange interaction to be independent of the filling of the electronic shell. We show how this unusual effect manifests itself in quantum dot addition and excitation spectrum.  相似文献   

8.
We have fabricated all II-VI semiconductor resonant tunneling diodes based on the (Zn,Mn,Be)Se material system, containing dilute magnetic material in the quantum well, and studied their current-voltage characteristics. When subjected to an external magnetic field the resulting spin splitting of the levels in the quantum well leads to a splitting of the transmission resonance into two separate peaks. This is interpreted as evidence of tunneling transport through spin polarized levels, and could be the first step towards a voltage controlled spin filter.  相似文献   

9.
The studies of spin phenomena in semiconductor low-dimensional systems have grown into the rapidly developing area of the condensed matter physics: spintronics. The most urgent problems in this area, both fundamental and applied, are the creation of charge carrier spin polarization and its detection, as well as electron spin control by nonmagnetic methods. Here, we present a review of recent achievements in the studies of spin dynamics of electrons, holes, and their complexes in the pump-probe method. The microscopic mechanisms of spin orientation of charge carriers and their complexes by short circularly polarized optical pulses and the formation processes of the spin signals of Faraday and Kerr rotation of the probe pulse polarization plane as well as induced ellipticity are discussed. A special attention is paid to the comparison of theoretical concepts with experimental data obtained on the n-type quantum well and quantum dot array samples.  相似文献   

10.
In a semiconductor quantum dot, the IIx and IIy transitions to the polarization eigenstates, |x> and |y>, naturally form a three-level V-type system. Using low-temperature polarized photoluminescence spectroscopy, we have investigated the exciton dynamics arising under strong laser excitation. We also explicitly solved the density matrix equations for comparison with the experimental data. The polarization of the exciting field controls the coupling between the otherwise orthogonal states. In particular, when the system is initialized into \Y>, a polarization-tailored pulse can swap the population into |x>, and vice versa, effectively operating on the exciton spin.  相似文献   

11.
As is well known, the absorption of circularly polarized light in semiconductors results in optical orientation of electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is accompanied by optical alignment of electron momenta. Here, we show that the absorption of unpolarized light leads to the generation of a pure spin current, although both the average electron spin and electric current vanish. We demonstrate this for direct interband and intersubband as well as indirect intraband (Drude-like) optical transitions in semiconductor quantum wells.  相似文献   

12.
Linearly polarized luminescence spectra of bare (unburied) semiconductor structures with ZnCdSe/ZnSe quantum wires, obtained by reactive ion etching, were investigated. It was found that, regardless of the orientation of the linear polarization of the exciting light, the luminescence radiation of the quantum wires is polarized parallel to the axis of the wires, while the radiation of the buffer layer of the isotropic ZnSe barrier material is oriented perpendicular to the axis of the wires. The polarization features found are due to the modification of the modes of the electromagnetic field near open quantum wires, which occurs as a result of the presence of the vertical interfaces between media with strongly different permittivities. It was also found that, when linearly polarized excitation is used, the alignment of exciton dipole moments strongly influences the polarization properties of the luminescence. Fiz. Tverd. Tela (St. Petersburg) 40, 1559–1562 (August 1998)  相似文献   

13.
The relative contributions of the partial electron waves emitted in the Auger decay of the Xe* 4d(-1)(5/2)6p(J(*)=1) resonance have been determined by fluorescence polarimetry after excitation with circularly polarized synchrotron radiation. The analysis of circularly polarized fluorescence of the photoion leads to an independent determination of the orientation parameters for all states of the Xe II 5p(4)6p multiplet. The present study provides, in combination with data on the angular distribution and spin polarization of the Auger electrons, complete quantum mechanical information on the resonant Auger decay, i.e., branching ratios and relative phases of the Auger decay amplitudes.  相似文献   

14.
The absorption of linearly polarized light in low-dimensional semiconductor structures is investigated. It is shown that the absorption under consideration can give rise to spin orientation of free carriers. A theory of this optical orientation by linearly polarized light is developed for resonant intersubband optical transitions in n-type quantum wells. It is demonstrated that, in the vicinity of the resonance, the optical orientation undergoes spectral inversion, namely, the electron spin orientation reverses sign with increasing frequency. This behavior can be accounted for by the spin-orbit subband splitting, which is linear in the wave vector, and by the energy and quasi-momentum conservation laws.  相似文献   

15.
Spin relaxation of Mn ions in a (Cd,Mn)Te quantum well with quasi-two-dimensional carriers (Q2DEG) is investigated. The mechanism of energy transfer is spin-flip scattering of Mn spin with electrons making transitions between spin subbands accompanied by a change in the Mn spin. A calculation of the spin-flip scattering rate shows that the Mn spin relaxation rate is proportional to the coupling constant squared, the density of states squared, and the electron temperature, the so called Korringa relaxation rate. It was found that for small Mn ion concentration, the relaxation time ≈10−7-10−6s is in a good agreement with experimental results. Moreover, the relaxation rate scales with L−2, L being the well width, and it can be enhanced over its value in bulk.  相似文献   

16.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

17.
Spin relaxation of Mn ions in a Cd0.97Mn0.03Te/Cd0.75Mg0.25Te quantum well with photogenerated quasi-two-dimensional electron-hole plasma at liquid helium temperatures in an external magnetic field has been investigated. Heating of Mn ions by photogenerated carriers due to spin and energy exchange between the hot electron-hole plasma and Mn ions through direct sd-interaction between electron and Mn spins has been detected. This process has a short characteristic time of about 4 ns, which leads to appreciable heating of the Mn spin subsystem in about 0.5 ns. Even under uniform excitation of a dense electron-hole plasma, the Mn heating is spatially nonuniform, and leads to formation of spin domains in the quantum well magnetic subsystem. The relaxation time of spin domains after pulsed excitation is measured to be about 70 ns. Energy relaxation of excitons in the random exchange potential due to spin domains results from exciton diffusion in magnetic field B=14 T with a characteristic time of 1 to 4 ns. The relaxation time decreases with decreasing optical pump power, which indicates smaller dimensions of spin domains. In weak magnetic fields (B=2 T) a slow down in the exciton diffusion to 15 ns has been detected. This slow down is due to exciton binding to neutral donors (formation of bound excitons) and smaller spin domain amplitudes in low magnetic fields. The optically determined spin-lattice relaxation time of Mn ions in a magnetic field of 14 T is 270±10 and 16±7 ns for Mn concentrations of 3% and 12%, respectively. Zh. éksp. Teor. Fiz. 112, 1440–1463 (October 1997)  相似文献   

18.
We examine the quantum spin state of a single nitrogen-vacancy (NV) center in diamond at room temperature as it makes a transition from the orbital ground state (GS) to the orbital excited state (ES) during nonresonant optical excitation. While the fluorescence readout of NV-center spins relies on conservation of the longitudinal spin projection during optical excitation, the question of quantum phase preservation has not been examined. Using Ramsey measurements and quantum process tomography of the optical excitation process, we measure a trace fidelity of F=0.87±0.03, which includes ES spin dephasing during measurement. Extrapolation to the moment of optical excitation yields F≈0.95. This result provides insight into the interaction between spin coherence and nonresonant optical absorption through a vibronic sideband.  相似文献   

19.
The processes of electron spin dynamics in a hybrid nonresonance structure, which includes a layer of a diluted magnetic II–Mn–VI semiconductor and an asymmetric quantum well (QW) of a nonmagnetic III–V semiconductor, are experimentally studied. The nonresonance of the structure is determined by the fact that the level of the ground state of the magnetic layer falls into the range of the excited states of the nonmagnetic QW. The electron polarization in the ground thermalized state of QW is found not to depend on the magnetic part of the structure. However, the magnetic part affects the electron polarization in the excited state via spin injection from the magnetic semiconductor and the mixing of the electronic states of the magnetic and nonmagnetic subsystems of the structure. The possibility of controlling the polarization of an electron spin by carrier excitation toward the region of mixed states along with the absence of depolarizing influence of the magnetic semiconductor on carriers in the thermalized state of QW can be applied to design new spintronic devices along with those that use spin injection, optical orientation, and depolarization.  相似文献   

20.
The Landauer–Büttiker formalism combined with the tight-binding transfer matrix method is used to describe the results of recent experiments: the high tunneling magnetoresistance (TMR) in (Ga,Mn)As-based trilayers and highly polarized spin injection in p-(Ga,Mn)As/n-GaAs Zener diode. For both TMR and Zener spin current polarization, the calculated values agree well with those observed experimentally. The role played in the spin dependent tunneling by carrier concentration and magnetic ion content is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号