首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Some properties of unsteady unidirectional flows of a fluid of second grade are considered for flows produced by the sudden application of a constant pressure gradient or by the impulsive motion of one or two boundaries. Exact analytical solutions for these flows are obtained and the results are compared with those of a Newtonian fluid. It is found that the stress at the initial time on the stationary boundary for flows generated by the impulsive motion of a boundary is infinite for a Newtonian fluid and is finite for a second grade fluid. Furthermore, it is shown that initially the stress on the stationary boundary, for flows started from rest by sudden application of a constant pressure gradient is zero for a Newtonian fluid and is not zero for a fluid of second grade. The required time to attain the asymptotic value of a second grade fluid is longer than that for a Newtonian fluid. It should be mentioned that the expressions for the flow properties, such as velocity, obtained by the Laplace transform method are exactly the same as the ones obtained for the Couette and Poiseuille flows and those which are constructed by the Fourier method. The solution of the governing equation for flows such as the flow over a plane wall and the Couette flow is in a series form which is slowly convergent for small values of time. To overcome the difficulty in the calculation of the value of the velocity for small values of time, a practical method is given. The other property of unsteady flows of a second grade fluid is that the no-slip boundary condition is sufficient for unsteady flows, but it is not sufficient for steady flows so that an additional condition is needed. In order to discuss the properties of unsteady unidirectional flows of a second grade fluid, some illustrative examples are given.  相似文献   

2.
1 TheProcessandStatementoftheResultAsadynamicalcounterpartoftheclassicalPoissonlimittheoremfor0_1valuedindependentrandomvariables,aPoissonlimittheoremisprovedbyPitskel[1,2 ]forergodicfiniteMarkovchains,forstronglyergodicnon_homogeneousfiniteMarkovchains.In…  相似文献   

3.
We calculate an exact upper bound for the magnitude of the coefficient of friction that ensures the existence of a solution to a static contact problem with Coulomb friction. The approach is based on a general existence result that is valid under the assumption that the coefficient of friction is bounded by a certain constant depending on the constants in two special trace type estimates for a half space domain. We calculate these constants for orthotropic material and two space dimensions with the help of a representation for a partial Fourier transform of the solution to the corresponding system of elasticity equations. The result is compared to the formula for general anisotropic material. The new bound for orthotropic material is significantly larger than the old one for general material, if the material is close to an isotropic material with Poisson ration greater than zero. For some cases the new bound can be even larger than one.   相似文献   

4.
If a body with a stiffer surface layer is loaded in compression, a surface wrinkling instability may be developed. A bifurcation analysis is presented for determining the critical load for the onset of wrinkling and the associated wavelength for materials in which the elastic modulus is an arbitrary function of depth. The analysis leads to an eigenvalue problem involving a pair of linear ordinary differential equations with variable coefficients which are discretized and solved using the finite element method.The method is validated by comparison with classical results for a uniform layer on a dissimilar substrate. Results are then given for materials with exponential and error-function gradation of elastic modulus and for a homogeneous body with thermoelastically induced compressive stresses.  相似文献   

5.
The problem of the propagation of longitudinal Biot waves in a porous medium saturated with a weakly compressible liquid (water) or a gas is considered theoretically. The frequency dependence of the phase velocities and damping coefficients is investigated numerically. It is shown that for a certain relationship between the parameters of the porous medium and the saturating fluid there is a “critical” frequency at which the properties of longitudinal waves of both kinds are identical. An analytical expression for this “critical” frequency is obtained. It is shown that for a gas-saturated porous medium, at a certain frequency, in both longitudinal waves the relative gas-matrix motion changes type. Assuming that the saturating-gas behavior corresponds to an adiabatic equation of state, an estimate is obtained for the threshold pore pressure necessary for the restructuring of the relative motion. The wave associated with matrix deformation is shown to have a high damping coefficient in a porous medium saturated with a weakly compressible liquid (water in the case considered) but to be only weakly damped in a gas-saturated porous medium.  相似文献   

6.
A discussion is presented on the existence of a diffusion velocity for the vorticity vector that satisfies extensions of the Helmholtz vortex laws in a three-dimensional, incompressible, viscous fluid flow. A general form for the diffusion velocity is derived for a complex-lamellar vorticity field that satisfies the property that circulation is invariant about a region that is advected with the sum of the fluid velocity and the diffusion velocity. A consequence of this property is that vortex lines will be material lines with respect to this combined velocity field. The question of existence of diffusion velocity for a general three-dimensional vorticity field is shown to be equivalent to the question of existence of solutions of a certain Fredholm equation of the first kind. An example is given for which it is shown that a diffusion velocity satisfying this property does not, in general, exist. Properties of the simple expression for diffusion velocity for a complex-lamellar vorticity field are examined when applied to the more general case of an arbitrary three-dimensional flow. It is found that this form of diffusion velocity, while not satisfying the condition of circulation invariance, nevertheless has certain desirable properties for computation of viscous flows using Lagrangian vortex methods. The significance and structure of the noncomplex-lamellar part of the viscous diffusion term is examined for the special case of decaying homogeneous turbulence.  相似文献   

7.
Beric W. Skews 《Shock Waves》2005,14(3):137-146
The two-dimensional diffraction of a shock wave over a wall made up of a series of plane and/or curved sections is considered. The analysis is based on the theory presented by, for the interaction of an originally plane shock wave with a corner. A method is presented by which the shock profile may be determined for a wall of any shape and for any incident Mach number, in regions where the characteristics form a simple wave. Comparisons are made between experimental measurements and theoretical predictions for convex walls consisting of a number of facets, and for circular arcs, for a range of incident shock wave Mach numbers. It is shown that the theory gives a satisfactory prediction of the wave shape, which improves as the Mach number increases. Modifications in the flow field behind the shock, compared to that for a simple corner made up of two plane walls is discussed, particularly relating to flow separation. For circular arc concave walls a inverse Mach reflection results experimentally, leading to regular reflection, for which the theory is of no use. PACS 47.40.Nm  相似文献   

8.
The contact of an indenter of arbitrary shape on an elastically anisotropic half space is considered. It is demonstrated in a theorem that the solution of the contact problem is the one that maximizes the load on the indenter for a given indentation depth. The theorem can be used to derive the best approximate solution in the Rayleigh-Ritz sense if the contact area is a priori assumed to have a certain shape. This approach is used to analyze the contact of a sphere and an axisymmetric cone on an anisotropic half space. The contact area is assumed to be elliptical, which is exact for the sphere and an approximation for the cone. It is further shown that the contact area is exactly elliptical even for conical indenters when a limited class of Green's functions is considered. If only the first term of the surface Green's function Fourier expansion is retained in the solution of the axisymmetric contact problem, a simpler solution is obtained, referred to as the equivalent isotropic solution. For most anisotropic materials, the contact stiffness determined using this approach is very close to the value obtained for both conical and spherical indenters by means of the theorem. Therefore, it is suggested that the equivalent isotropic solution provides a quick and efficient estimate for quantities such as the elastic compliance or stiffness of the contact. The “equivalent indentation modulus”, which depends on material and orientation, is computed for sapphire and diamond single crystals.  相似文献   

9.
The non-uniqueness of the trantition from nonobjective constitutive relations to objective ones with the use of the principle of material frame-indifference (PMFI) is shown. To eliminate it, the concept of finite strain without rotations (FSWR) for a given material type and each strain component (elastic, plastic) is introduced. In FSWR the rotation is excluded with respect to the natural preferred configuration for a given material. Considered are a simple solid, a liquid, a monocrystal, a polycrystal and a composite. The proecedure is proposed for consistent generalization of known infinitesimal relations for finite strains and rotations. The structure of constitutive relations is derived for anisotropic elasto-plastic mono- and polycrystalline materials.  相似文献   

10.
弹性力学的一种正交关系   总被引:8,自引:2,他引:8  
罗建辉  刘光栋 《力学学报》2003,35(4):489-492
在弹性力学求解新体系中,将对偶向量进行重新排序后,提出了一种新的对偶微分矩阵,对于有一个方向正交的各向异性材料的三维弹性力学问题发现了一种新的正交关系.将材料的正交方向取为z轴,证明了这种正交关系的成立.对于z方向材料正交的各向异性弹性力学问题,新的正交关系包含弹性力学求解新体系提出的正交关系。  相似文献   

11.
Within the thin-layer approximation for a highly-viscous heavy incompressible fluid, a hydrodynamicmodel of a 3D isothermal lava flow over a non-axisymmetric conical surface is constructed. Using analytical methods, a self-similar solution for the law of leading-edge propagation is obtained in the case of a flow from a non-axisymmetric source located at the apex of a conical surface with smoothly varying properties. In the case of a flow over a substantially non-axisymmetric surface, it is shown that there exists a self-similar solution for the free-surface shape and the law of leading-edge motion. This solution is studied numerically for particular examples of the substrate surface and the source. In the general case of a non-self-similar flow over a substantially non-axisymmetric conical surface, a local analytical solution is obtained for the free-surface shape and the velocity field near the leading flow front.  相似文献   

12.
The paper addresses an important issue of cloaking transformations for fourth-order partial differential equations representing flexural waves in thin elastic plates. It is shown that, in contrast with the Helmholtz equation, the general form of the partial differential equation is not invariant with respect to the cloaking transformation. The significant result of this paper is the analysis of the transformed equation and its interpretation in the framework of the linear theory of pre-stressed plates. The paper provides a formal framework for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm is proposed for designing a broadband square cloak for flexural waves, which employs a regularised push-out transformation. Illustrative numerical examples show high accuracy and efficiency of the proposed cloaking algorithm. In particular, a physical configuration involving a perturbation of an interference pattern generated by two coherent sources is presented. It is demonstrated that the perturbation produced by a cloaked defect is negligibly small even for such a delicate interference pattern.  相似文献   

13.
This paper deals exclusively with finite amplitude motions in viscoelastic materials for which the stress is the sum of a part corresponding to the classical Mooney-Rivlin incompressible isotropic elastic solid and of a dissipative part corresponding to the classical viscous incompressible fluid. Of particular interest is a finite pseudoplanar elliptical motion which is an exact solution of the equations of motion. Superposed on this motion is a finite shearing motion. An explicit exact solution is presented. It is seen that the basic pseudoplanar motion is stable with respect to the finite superposed shearing motion. Particular exact solutions are obtained for the classical neo-Hookean solid and also for the classical Navier-Stokes equations. Finally, it is noted that parallel results may be obtained for a basic pseudoplanar hyperbolic motion.  相似文献   

14.
The lag-entrainment method, which is a well-established integral method for predicting the development of turbulent boundary layers, is used in this study to predict two-dimensional turbulent separated flow. The method is used in an inverse mode, in which the displacement thickness is specified together with other integral parameters of the boundary layer. It is concluded that the prediction of two-dimensional separated flow by an integral method is feasible, but there is a need for accurate data for both equilibrium and general separated flows for making a comparison.  相似文献   

15.
In this paper we derive a macroscopic kinetic law for twin boundary motion from a lattice dynamical model. The model is developed for compound and type-1 twins and it is explicitly illustrated for a Cu-Al-Ni shape memory alloy. The governing multiple-well energy is calculated using an effective interatomic potential; a Frenkel-Kontorowa type model is developed for the dynamics at the lattice scale; and a quasi-continuum approximation is used to determine the continuum-scale kinetics. The model predicts that compound twins in the Cu-Al-Ni shape memory alloy are an order of magnitude more mobile than type-1 twins which is consistent with experimental observations.  相似文献   

16.
I present here a method of generating a distribution of initial water elevation by employing the adjoint equation and finite element methods. A shallow‐water equation is employed to simulate flow behavior. The adjoint equation method is utilized to obtain a distribution of initial water elevation for the observed water elevation. The finite element method, using the stabilized bubble function element, is used for spatial discretization, and the Crank–Nicolson method is used for temporal discretizations. In addition to a method for optimally assimilating water elevation, a method is presented for determining adjoint boundary conditions. An examination using the observation data including noise data is also carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Summary  An exact, three-dimensional analysis is developed for a penny-shaped crack in an infinite transversely isotropic piezoelectric medium. The crack is assumed to be parallel to the plane of isotropy, with its faces subjected to a couple of concentrated normal forces and a couple of point electric charges that are antisymmetric with respect to the crack plane. The fundamental solution of a concentrated force and a point charge acting on the surface of a piezoelectric half-space is employed to derive the integral equations for the general boundary value problem. For the above antisymmetric crack problem, complete expressions for the elastoelectric field are obtained. A numerical calculation is finally performed to show the piezoelectric effect in piezoelectric materials. It is noted here that the present analysis is an extension of Fabrikant's theory for elasticity. Received 30 August 1999; accepted for publication 1 March 2000  相似文献   

18.
This paper presents a method of controlling the water levels in a conduit system by employing optimal control theory and the finite element method. A shallow‐water equation is employed for the analysis of flow behaviour. Optimal control theory is utilized to obtain a control value for the target state value. The Sakawa–Shindo method is employed as a minimization technique. For the computational storage requirements, the time domain decomposition method is applied. The Crank–Nicolson method is used for temporal discretization. In addition to a method for optimally controlling water level, a method is presented for determining transversality conditions, the terminal condition of the Lagrange multiplier. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The steady incompressible Navier–Stokes equations are coupled by a Poisson equation for the pressure from which the continuity equation is subtracted. The equivalence to the original N–S problem is proved. Fictitious time is added and vectorial operator-splitting is employed leaving the system coupled at each fractional-time step which allows satisfaction of the boundary conditions without introducing artificial conditions for the pressure. Conservative second-order approximations for the convective terms are employed on a staggered grid. The splitting algorithm for the 3D case is verified through an analytic solution test. The stability of the method at high values of Reynolds number is illustrated by accurate numerical solutions for the flow in a lid-driven rectangular cavity with aspect ratio 1 and 2, as well as for the flow after a back-facing step.  相似文献   

20.
A three-dimensional analysis is performed for an infinite transversely isotropic elastic body containing an insulated rigid sheet-like inclusion (an anticrack) in the isotropy plane under a remote perpendicularly uniform heat flow. A general solution scheme is presented for the resulting boundary-value problems. Accurate results are obtained by constructing suitable potential solutions and reducing the thermal problem to a mechanical analog for the corresponding isotropic problem. The governing boundary integral equation for a planar anticrack of arbitrary shape is obtained in terms of a normal stress discontinuity. As an illustration, a complete solution for a rigid circular inclusion is obtained in terms of elementary functions and analyzed. This solution is compared with that corresponding to a penny-shaped crack problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号